Gujarat Board Solutions Class 10 Maths Chapter 9 ત્રિકોણમિતિના ઉપયોગો Ex 9.1
Gujarat Board Solutions Class 10 Maths Chapter 9 ત્રિકોણમિતિના ઉપયોગો Ex 9.1
Gujarat Board Textbook Solutions Class 10 Maths Chapter 9 ત્રિકોણમિતિના ઉપયોગો Ex 9.1
પ્રશ્ન 1.
સર્કસના તંબુમાં, જમીન સાથે શિરોલંબ સ્થિતિમાં રહેલા થાંભલાની ટોચથી જમીન સાથે ખેંચીને બાંધેલા 20 મી લાંબા દોરડા પર એક કલાકાર ચડી રહ્યો છે. જો દોરડું જમીન સાથે 30° માપનો ખૂણો બનાવે, તો થાંભલાની ઊંચાઈ શોધો. (જુઓ આકૃતિ).
પ્રશ્ન 2.
વાવાઝોડાને કારણે એક ઝાડ એ રીતે ભાંગીને વળી જાય છે, જેથી તેની ટોચ, જમીન સાથે 30° માપનો ખૂણો બનાવે તે રીતે જમીનને સ્પર્શે છે. ઝાડની જમીનને સ્પર્શતી ટોચ અને ઝાડના થડ વચ્ચેનું અંતર 8 મી હોય, તો ઝાડની ઊંચાઈ શોધો.
પ્રશ્ન 3.
એક ઠેકેદારે બાળકોને રમવા માટે, બગીચામાં બે લપસણી લગાવવાની છે. આ માટે તે 5 વર્ષથી ઓછી ઉંમરનાં બાળકો માટે જમીનથી ઉપરનો છેડો 1.5 મી રહે અને જમીન સાથે 30નો ખૂણો બનાવે તેવી અને તેનાથી વધારે ઉંમરનાં બાળકો માટે 3 મીની ઊંચાઈથી સીધો ઢાળ હોય તથા જમીન સાથે છે 60નો ખૂણો બનાવતી હોય તેવી લપસણીઓ પસંદ કરે છે, તો બંને લપસણીઓની લંબાઈ શોધો.
ઉત્તરઃ
પ્રશ્ન 4.
ટાવરના પાયાથી 30 મી દૂર રહેલા જમીન પરના એક બિંદથી ટાવરની ટોચના ઉસેધકોણનું માપ 30° છે, તો ટાવરની ઊંચાઈ શોધો.
ઉત્તરઃ
પ્રશ્ન 5.
એક પતંગ જમીનથી 60 મીની ઊંચાઈ પર ઊડી રહેલ છે. આ પતંગની દોરીનો એક છેડો ક્ષણભર માટે જમીન પરના એક બિંદુ સાથે બાંધેલ છે. આ સ્થિતિમાં દોરીનો જમીન સાથેનો ખૂણો 60° છે. જો દોરીમાં કોઈ ઢીલ નથી તેવું માની લેવામાં આવે, તો દોરીની લંબાઈ શોધો.
ઉત્તરઃ
પ્રશ્ન 6.
1.5 મી ઊંચો એક છોકરો એક 30 મી ઊંચી ઇમારતથી કોઈક અંતરે ઊભેલ છે. હવે જ્યારે તે ઇમારત તરફ ચાલવાનું શરૂ કરે છે ત્યારે કેટલાક સમય પછી તેની આંખથી ઇમારતની ટોચના ઉસેધકોણનું માપ 30થી વધીને 60° થાય છે, તો તે કેટલું અંતર ચાલ્યો હશે?
ઉત્તરઃ
અહીં, AB ઇમારત દર્શાવે છે. C એ છોકરાનું શરૂઆતનું સ્થાન રે તથા D એ છોકરાનું અંતિમ સ્થાન દર્શાવે છે. વળી, M અને N એ બે સ્થાન પરની પરિસ્થિતિમાં છોકરાની આંખો દર્શાવે છે. ધારો કે, લંબાવેલ MN, ABP Pમાં મળે છે.
આથી ∆ APNમાં, ∠P = 90°; ∠N = 60° તથા ∆ APMમાં, ∠P = 90° અને ∠M = 30°.
વળી, CM = DN = BP = 1.5 મી અને
AP = AB – BP = 28.5 મી.
∆ APNમાં, ∠P = 90°
tan N = AP/PN
પ્રશ્ન 7.
જમીન પર આવેલ એક બિંદુથી એક 20 મી ઊંચી ઇમારતની ટોચ પર રહેલ એક સંચાર ટાવરના તળિયા અને ટોચના ઉસેધકોણનાં જ માપ અનુક્રમે 45° અને 60° છે, તો ટાવરની ઊંચાઈ શોધો.
ઉત્તરઃ
પ્રશ્ન 8.
એક ઊંચી બેઠક પર 1.6 મી ઊંચી એક પ્રતિમા ગોઠવેલ છે. જમીન પરના એક બિંદુએથી પ્રતિમાની ટોચના ઉન્સેધકોણનું માપ 60° અને બેઠકની ટોચના ઉસેધકોણનું માપ 45° છે, તો બેઠકની ઊંચાઈ શોધો.
ઉત્તરઃ
પ્રશ્ન 9.
એક ટાવરના તળિયાથી એક ઇમારતની ટોચના ઉસેધકોણનું માપ 30° છે અને ઇમારતના તળિયાથી ટાવરની ટોચના ઉસેધકોણનું માપ 60° છે. જો ટાવરની ઊંચાઈ 50 મી હોય, તો ઈમારતની ઊંચાઈ શોધો.
ઉત્તરઃ
પ્રશ્ન 10.
એક 80 મી પહોળા માર્ગની બંને બાજુએ સમાન ઊંચાઈના બે સ્તંભ શિરોલંબ સ્થિતિમાં છે. માર્ગ પર વચ્ચે આવેલ કોઈ એક બિંદુએથી બંને સ્તંભની ટોચના ઉસેધકોણનાં માપ 60° અને 30° જણાય છે. તો દરેક સ્તંભની ઊંચાઈ શોધો તથા બંને સ્તંભનું નિરીક્ષણ બિંદુથી અંતર શોધો.
ઉત્તરઃ
x = 20 મી
અને 80 – x = 80 – 20 = 60 મી આમ, દરેક સ્તંભની ઊંચાઈ 20/3 મી છે, નિરીક્ષણ સ્થાનનું નજીકના સ્તંભથી અંતર 20 મી છે તથા તેનું બીજા સ્તંભથી અંતર 60 મી છે.
પ્રશ્ન 11.
નહેરના એક કિનારા પર ટીવીનો ટાવર શિરોલંબ ઊભો કરવામાં આવેલ છે. ટાવરની સામેના બીજા કિનારા પર રહેલા એક બિંદુથી . ટાવરની ટોચનો ઉલ્લેધકોણ 60° છે. ટાવરના તળિયા અને નિરીક્ષણ બિંને જોડતી રેખા પર આવેલ અને નિરીક્ષણ બિંદુથી 20 મી દૂર બીજા એક બિંદુથી ટાવરની ટોચના ઉસેધકોણનું માપ 30° છે (જુઓ આકૃતિ), તો ટાવરની ઊંચાઈ અને નહેરની પહોળાઈ શોધો.
ઉત્તરઃ
અહીં, AB ટીવીનો ટાવર, BC એ નહેરની પહોળાઈ તથા C અને D એકબીજાથી 20 મી દૂર આવેલાં એવાં નિરીક્ષણ બિંદુઓ છે કે જેથી D, C અને B સમરખ થાય.
આથી ∆ ABCમાં, ∠B = 90° અને ∠C = 60° તથા ∆ ABDમાં, ∠B = 90° અને ∠D = 30° થાય, તેમજ CD = 20 મી થાય.
ધારો કે, ટાવરની ઊંચાઈ = AB = h મી અને નહેરની પહોળાઈ = BC = x મી.
આથી BD = BC + CD = (x + 20) મી થાય.
પ્રશ્ન 12.
7 મી ઊંચી ઇમારત પરથી એક કેબલ’ ટાવરની ટોચનો ઉલ્લેધકોણ 60° અને ટાવરના તળિયાનો અવસેધકોણ 45° છે, તો ટાવરની ઊંચાઈ શોધો.
ઉત્તરઃ
અહીં, AB એ 7 મી ઊંચી ઇમારત, CD એ ‘કેબલ’ ટાવર છે.
AE ⊥ CD દોરો, જેથી E એ CD પરનું બિંદુ હોય.
આથી ચતુષ્કોણ ∆ BDE લંબચોરસ આપેલ પરિસ્થિતિમાં ચોરસ) થાય.
હવે, AB = 7 મી; ∠E = 90°; ∠B = 90°; ∠CAE = 60° અને ∠EAD = 45°.
આથી ED = AB = 7 મી, ∠EAD = ∠ADB અને AE = BD.
∆ ABD, ∠B = 90°
પ્રશ્ન 13.
દરિયાની સપાટીથી 75 મી ઊંચી દીવાદાંડી પરથી અવલોકન કરતાં, દરિયામાં રહેલાં બે વહાણના અવસેધકોણનાં માપ 30° અને 45° માલૂમ પડે છે. જો એક વહાણ બીજાની બરાબર પાછળ હોય અને બંને વહાણ દીવાદાંડીની એક જ બાજુ પર આવેલ હોય, તો બંને વહાણ વચ્ચેનું અંતર શોધો.
ઉત્તરઃ
પ્રશ્ન 14.
1.2 મી ઊંચાઈવાળી એક છોકરીને, જમીનથી 88.2 મી ઊંચાઈ પર રહેલું પવનને કારણે સમક્ષિતિજ રેખામાં ગતિ કરતું એક બલૂન જોવા મળે છે. કોઈ એક સમયે છોકરીને તેના ઉસેધકોણનું માપ 60° મળે છે. થોડા સમય બાદ બલૂનના ઉન્સેધકોણનું માપ 30° થાય છે (જુઓ આકૃતિ), તો આ સમય દરમિયાન બલૂને કાપેલું અંતર શોધો.
ઉત્તરઃ
અહીં, A અને B એ બલૂનનાં બે સ્થાન છે.
CD એ 1.2 મી ઊંચાઈવાળી છોકરી છે.
DQ એ સમથળ જમીન છે અને CP એ છોકરીની આંખમાંથી પસાર થતી સમક્ષિતિજ રેખા છે.
AM ⊥ CP દોરો, જેથી M એ CPનું બિંદુ હોય.
આથી ∆ AMCમાં, ∠M = 90° અને ∠C = 60°;
∆ BPCમાં, ∠P = 90° અને ∠C = 30°;
PQ = CD = 1.2 મી, BQ = 88.2 મી અને તેથી
AM = BP = BQ – PQ
= 88.2 – 1.2 = 87 મી
∆ BPCમાં ∠P = 90°
tan C = BP/PC.
પ્રશ્ન 15.
એક સુરેખ માર્ગ ટાવર તરફ જાય છે. ટાવરની ટોચ પર રહેલ એક વ્યક્તિ, ટાવર તરફ અચળ ઝડપથી આવતી એક મોટરકારના અવસેધકોણનું માપ 30° નોંધે છે. 6 સેકન્ડ પછી આ કારના અવસેધકોણનું માપ 60° થાય છે, તો કારને ટાવર સુધી પહોંચતાં કેટલો સમય લાગશે?
ઉત્તરઃ
પ્રશ્ન 16.
ટાવરના તળિયામાંથી પસાર થતી રેખા પર તળિયાથી 4 મી અને 9 મી દૂર આવેલાં બે બિંદુથી ટાવરની ટોચના ઉર્સેધકોણનાં માપ કોટિકોણનાં માપ છે. સાબિત કરો કે, ટાવરની ઊંચાઈ 6 મી છે.
ઉત્તરઃ
અહીં, AB ટાવર છે. C એ ટાવરના તળિયાથી 4 મી દૂર આવેલ નિરીક્ષણ બિંદુ છે અને D એ ટાવરના તળિયાથી 9 મી દૂર આવેલ નિરીક્ષણ બિંદુ છે.
આથી ∆ ABCમાં, ∠B = 90° અને BC = 4 મી તથા
∆ ABDમાં, ∠B = 90° અને BD = 9 મી.
ધારો કે, ∠ACB = θ
હવે, ∠ACB અને ∠ADB કોટિકોણ હોવાથી,
∠ADB = 90° – θ થાય.
∆ ABCમાં, ∠B = 90°
tan C = AB/BC
∴ AB = 6 (ટાવરની ઊંચાઈ કદી ઋણ ન હોય.) આમ, સાબિત થાય છે કે ટાવરની ઊંચાઈ 6 મી છે.