HR 9 Maths

Haryana Board 9th Class Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Exercise 13.6

Haryana Board 9th Class Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Exercise 13.6

HBSE 9th Class Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.6

प्रश्न 1. एक बेलनाकार बर्तन के आधार की परिधि 132 सें०मी० और उसकी ऊंचाई 25 सें०मी० है। इस बर्तन में कितने लीटर पानी आ सकता है ? (1000 सें०मी०3 = 1 लीटर)
हल :
यहां पर,
बेलनाकार बर्तन की ऊंचाई (h) = 25 सें०मी०
बेलनाकार बर्तन के आधार की परिधि = 132 सें०मी०
⇒ 2πr = 132
⇒ 2 × 22/7 × r = 132
या r = 132×7/2×22 = 21 सें०मी०
∴ बेलनाकार बर्तन का आयतन (V) = πr2h
22/7 × 21 × 21 × 25 सें०मी०3
= 34650 सें०मी०3
अतः बर्तन में जितने लीटर पानी आ सकता है = 34650/1000 लीटर
= 34.65 लीटर उत्तर
प्रश्न 2. लकड़ी के एक बेलनाकार पाइप का आंतरिक व्यास 24 सें०मी० है और बाहरी व्यास 28 सें०मी० है। इस पाइप की लंबाई 35 सें०मी० है। इस पाइप का द्रव्यमान ज्ञात कीजिए, यदि 1 सें०मी०3 लकड़ी का द्रव्यमान 0.6 ग्राम है।
हल :
यहां पर,
बेलनाकार पाइप का अंतः व्यास (d) = 24 सें०मी०
बेलनाकार पाइप की अंतः त्रिज्या (r) = 24/2 = 12 सें०मी०
बेलनाकार पाइप का बाह्य व्यास (D) = 28 सें०मी०
बेलनाकार पाइप की बाह्य त्रिज्या (R) = 28/2 = 14 सें०मी०
बेलनाकार पाइप की लंबाई (h) = 35 सें०मी०
इस प्रकार पाइप में लगी लकड़ी का आयतन (V) =
बाह्य आयतन – आंतरिक आयतन = πh (R2 – r2)
22/7 × 35 [(14)2 – (12)2] सें०मी०3
= 110 [196 – 144] सें०मी०3
= 110 × 52 = 5720 सें०मी०3
1 सें०मी०3 लकड़ी का द्रव्यमान = 0.6 ग्राम
अतः 5720 सें०मी०3 पाइप का द्रव्यमान = 5720 × 0.6 ग्राम = 3432 ग्राम
= 3.432 किलोग्राम उत्तर
प्रश्न 3. एक सोफ्ट ड्रिंक (soft drink) दो प्रकार के पैकों में उपलब्ध है : (i) लंबाई 5 सें०मी० और चौड़ाई 4 सें०मी० वाले एक आयताकार आधार का टिन का डिब्बा जिसकी ऊंचाई 15 सें०मी० है और (ii) व्यास 7 सें०मी० वाले वृत्तीय आधार और 10 सें०मी० ऊंचाई वाला एक प्लास्टिक का बेलनाकार डिब्बा। किस डिब्बे की धारिता अधिक है और कितनी अधिक है ?
हल :
यहां पर,
आयताकार आधार वाले डिब्बे की लंबाई (l) = 5 सें०मी०
आयताकार आधार वाले डिब्बे की चौड़ाई (b) = 4 सें०मी०
आयताकार आधार वाले डिब्बे की ऊंचाई (h) = 15 सें०मी०
∴ आयताकार आधार वाले डिब्बे का आयतन (V) = l × b × h = 5 × 4 × 15 = 300 सें०मी०3
बेलनाकार डिब्बे की ऊंचाई (h) = 10 सें०मी०
बेलनाकार डिब्बे के आधार का व्यास (d) = 7 सें०मी०
बेलनाकार डिब्बे के आधार की त्रिज्या (r) = 7/2 = सें०मी०
∴ बेलनाकार डिब्बे का आयतन (V) = πr2h
22/7×7/2×7/2 × 10 सें०मी०3
= 385 सें०मी०3
∵ 385 > 300 ∴ बेलनाकार डिब्बे की धारिता अधिक है।
अतः बेलनाकार डिब्बे की धारिता जितनी अधिक है = 385 – 300 सें०मी०3
= 85 से०मी०3 उत्तर
प्रश्न 4. यदि एक बेलन का पार्श्व पृष्ठीय क्षेत्रफल 94.2 सें०मी०2 है और उसकी ऊंचाई 5 सें०मी० है, तो ज्ञात कीजिए:

(i) आधार की त्रिज्या,
(ii) बेलन का आयतन (70 = 3.14 लीजिए)।
हल :
(i) यहां पर,
बेलन की ऊंचाई (h) = 5 सें०मी०
बेलन का पार्श्व पृष्ठीय क्षेत्रफल = 94.2 सें०मी०2
⇒ 2πrh = 942/10 सें०मी०2
या 2 × 3.14 × r × 5 = 942/10
या 2×314×r×5/100 = 942/10
या 314r/10 = 942/10
या r = 942/10×10/314 = 3 सें०मी०
अतः बेलन के आधार की त्रिज्या (r) = 3 सें०मी० उत्तर

(ii) बेलन का आयतन = πr2h
= 3.14 × 3 × 3 × 5 सें०मी०3
= 3.14 × 45 = 141.3 सें०मी०3 उत्तर

प्रश्न 5. 10m गहरे एक बेलनाकार बर्तन की आंतरिक वक्र पृष्ठ को पेंट कराने का व्यय 2200 रुपए है। यदि पेंट कराने की दर ₹ 20 प्रति मी०2 है, तो ज्ञात कीजिए :
(i) बर्तन का आंतरिक वक्र पृष्ठीय क्षेत्रफल,
(ii) आधार की त्रिज्या,
(iii) बर्तन की धारिता।
हल :
(i) बेलनाकार बर्तन के आंतरिक वक्र पृष्ठ पर पेंट कराने का व्यय = ₹ 2200
बेलनाकार बर्तन के आंतरिक वक्र पृष्ठ पर पेंट कराने की दर = ₹ 20 प्रति मी०2
अतः बेलनाकार बर्तन का आंतरिक वक्र पृष्ठीय क्षेत्रफल
2200/20 मी०2
= 110 मी०2 उत्तर

(ii) बेलनाकार बर्तन की गहराई (h) = 10 मी०
बेलनाकार बर्तन का आंतरिक वक्र पृष्ठीय क्षेत्रफल = 110 मी०2
⇒ 2πrh = 110
या 2 × 22/7 × r × 10 = 110
या 440/7 r = 110
या r = 110×7/440=7/4 मी० = 1.75 मी०
अतः बेलनाकार बर्तन के आधार की त्रिज्या (r) = 1.75 मी० उत्तर

(iii) बेलनाकार बर्तन का आयतन (V) = πr2h
22/7×7/4×7/4 × 10 मी०3 = 96.25 मी०3
अतः बेलनाकार बर्तन की धारिता = 96.25 किलोलीटर (∵ 1 मी०3 = 1 kl) उत्तर

प्रश्न 6. ऊंचाई 1 मी० वाले एक बेलनाकार बर्तन की धारिता 15.4 लीटर है। इसको बनाने के लिए कितने वर्ग मीटर धातु की शीट की आवश्यकता होगी ? 
हल :
यहां पर,
बेलनाकार बर्तन की ऊंचाई (h) = 1 मी०
बेलनाकार बर्तन की धारिता = 15.4 लीटर
बेलनाकार बर्तन का आयतन (V) = 154/10×1000 मी०3

प्रश्न 7. सीसे की एक पेंसिल (lead pencil) लकड़ी के एक बेलन के अभ्यंतर में ग्रेफाइट (graphite) से बने ठोस बेलन को डालकर बनाई गई है। पेंसिल का व्यास 7 मि०मी० है और ग्रेफाइट का व्यास 1 मि०मी० है। यदि पेंसिल की लंबाई 14 सें०मी० है, तो लकड़ी का आयतन और ग्रेफाइट का आयतन ज्ञात कीजिए।
हल :
यहां पर,
पेंसिल का व्यास (d) = 7 मि०मी०
पेंसिल की त्रिज्या (r) = 7/2 मि०मी० = 7/20 सें०मी०
पेंसिल की लंबाई (h) = 14 सें०मी०
अतः पेंसिल का आयतन (V) = πr2h
22/7×7/20×7/20 × 14 सें०मी०3
539/100 सें०मी०3
= 5.39 सें०मी०3
ग्रेफाइट के सिक्के का व्यास (d) = 1 मि०मी०
ग्रेफाइट के सिक्के की त्रिज्या (r1) = 1/2 मि०मी० = 1/20 सें०मी०
ग्रेफाइट के सिक्के का आयतन (V) = πr12h
22/7×1/20×1/20 × 14 सें०मी०3
11/100 सें०मी०3
= 0.11 सें०मी०3
इस प्रकार पेंसिल में लगी लकड़ी का आयतन = 5.39 – 0.11 = 5.28 सें०मी०3 उत्तर

प्रश्न 8. एक अस्पताल (hospital) के एक रोगी को प्रतिदिन 7 सें०मी० व्यास वाले एक बेलनाकार कटोरे में सूप (soup) दिया जाता है। यदि यह कटोरा सूप से 4 सें०मी० ऊंचाई तक भरा जाता है, तो इस अस्पताल में 250 रोगियों के लिए प्रतिदिन कितना सूप तैयार किया जाता है ?
हल :
यहां पर,
बेलनाकार कटोरे का व्यास (d) = 7 सें०मी०
बेलनाकार कटोरे की त्रिज्या (r) = 7/2 सें०मी०
कटोरे में सूप की ऊंचाई (h) = 4 सें०मी०
कटोरे में सूप का आयतन = πr2h
22/7×7/2×7/2 × 4
= 154 सें०मी०3
1 रोगी को दिया जाने वाला सूप = 154 सें०मी०3
250 रोगियों को दिया जाने वाला सूप = 154 × 250 सें०मी०3
= 38500 सें०मी०3
38500/1000 = 285 लीटर (∵ 1000 सें०मी०3 = 1 लीटर)
अतः अस्पताल में प्रतिदिन जितने लीटर सूप तैयार होता है = 38.5 लीटर उत्तर

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *