HR 10 Maths

Haryana Board 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Exercise 12.3

Haryana Board 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Exercise 12.3

HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 1.
संलग्न आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, यदि .. PQ = 24cm, PR = 7cm तथा 0 वृत्त का केंद्र है।
हल :

यहाँ पर,
PQ = 24cm
PR = 7cm
हम जानते हैं कि अर्धवृत्त में बना कोण ∠RPQ = 90°
समकोण त्रिभुज RPQ में पाइथागोरस प्रमेय से
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 2
अतः दिए गए वृत्त का व्यास (RQ) = 25cm
दिए गए वृत्त की त्रिज्या (r) = 25/2 cm
दिए गए वृत्त के छायांकित भाग का क्षेत्रफल = अर्धवृत्त का क्षेत्रफल – ΔRPQ का क्षेत्रफल
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 3

प्रश्न 2.
संलग्न आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, यदि केंद्र 0 वाले दोनों संकेंद्रीय वृत्तों की त्रिज्याएँ क्रमशः 7cm और 14cm हैं तथा ∠AOC = 40° है।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 5
यहाँ पर, बड़े वृत्त की त्रिज्या (R) = 14cm
छोटे वृत्त की त्रिज्या (r) = 7cm
चाप AC तथा चाप BD द्वारा केंद्र पर अंतरित कोण (e) = 40°
छायांकित त्रिज्यखंड का क्षेत्रफल = (त्रिज्यखंड AOC – त्रिज्यखंड BOD) का क्षेत्रफल

प्रश्न 3.
संलग्न आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, यदि ABCD भुजा 14cm का एक वर्ग है तथा APD और BPC दो अर्धवृत्त हैं।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 6
यहाँ पर, वर्ग ABCD की भुजा = 14cm
वर्ग ABCD का क्षेत्रफल = भुजा – भुजा
= 14 x 14 cm2 = 196 cm2
प्रत्येक अर्धवृत्त की त्रिज्या (r) = 14/2 = 7 cm
दोनों अर्धवृत्तों (APD + BPC) का क्षेत्रफल = 2 x (1/2 πr² )
22/7 x 7 x 7 cm2
= 154 cm2
अतः आकृति के छायांकित भाग का क्षेत्रफल = (196 – 154) cm2
= 42 cm2

प्रश्न 4.
संलग्न आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, जहाँ भुजा 12cm वाले एक समबाहु त्रिभुज OAB के शीर्ष 0 को केंद्र मानकर 6 सें०मी० त्रिज्या वाला एक वृत्तीय चाप खींचा गया है।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 7
यहाँ पर, ΔAOB समबाहु त्रिभुज है। .
∴ ∠AOB = 60°
[∵ समबाहु त्रिभुज का प्रत्येक कोण 60° होता है।]
समबाहु ΔOAB का क्षेत्रफल = 3/4 – (भुजा)2
= 3/4 x 12 x 12 cm2
= 36√3 cm2
वृत्त की त्रिज्या (r) = 6cm
वृत्त का क्षेत्रफल = πr²
22/7 x 6 x 6 cm2
792/7 cm2

HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 8

प्रश्न 5.
भुजा 4 cm वाले एक वर्ग के प्रत्येक कोने से 1 cm त्रिज्या वाले वृत्त का एक चतुर्थांश काटा गया है तथा बीच में 2 cm व्यास का एक वृत्त भी काटा गया है, जैसाकि संलग्न आकृति में दर्शाया गया है। वर्ग के शेष भाग का क्षेत्रफल ज्ञात कीजिए।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 9
यहाँ पर,
दिए गए वर्ग की भुजा = 4 cm
दिए गए वर्ग का क्षेत्रफल = भुजा – भुजा
= 4 x 4 cm2 = 16 cm2
कोने से काटे गए वृत्त के प्रत्येक चतुर्थांश की त्रिज्या (r1) = 1 cm
कोने से काटे गए वृत्त के चारों चतुर्थांश का क्षेत्रफल = 4 x प्रत्येक चतुर्थांश का क्षेत्रफल

बीच के वृत्त का व्यास = 2 cm
बीच के वृत्त की त्रिज्या (r2) = 2/2 cm = 1 cm
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 10

प्रश्न 6.
एक वृत्ताकार मेज़पोश, जिसकी त्रिज्या 32 cm है, में बीच में एक समबाहु त्रिभुज ABC छोड़ते हुए एक डिज़ाइन बना हुआ है, जैसाकि संलग्न आकृति में दिखाया गया है। इस छायांकित डिज़ाइन का क्षेत्रफल ज्ञात कीजिए।
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 11
हल :

HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 14

अतः दी आकृति के छायांकित भाग का क्षेत्रफल = [22528/77683] cm2

प्रश्न 7.
संलग्न आकृति में, ABCD भुजा 14 cm वाला एक वर्ग है। A,B,C और D को केंद्र मानकर, चार वृत्त इस प्रकार खींचे गए हैं कि प्रत्येक वृत्त तीन शेष वृत्तों में से दो वृत्तों को बाह्य रूप से स्पर्श करता है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 15
यहाँ पर,
दिए गए वर्ग ABCD की भुजा = 14 cm
दिए गए वर्ग ABCD का क्षे० = भुजा – भुजा
= (14 x 14)cm2 = 196cm2
प्रत्येक वृत्त के चतुर्थांश की त्रिज्या (r) = 14/2 = 7 cm
प्रत्येक वृत्त के चतुर्थांश का क्षेत्रफल = πr2/4=22/7×7×7/4 cm2
77/2 cm2
चारों वृत्तों के चारों चतुर्थांशों का क्षेत्रफल = 4 x प्रत्येक चतुर्थांश का क्षेत्रफल .
= 4 x 77/2 cm2 = 154 cm2
अतः आकृति के छायांकित भाग का क्षेत्रफल = वर्ग का क्षेत्रफल – चार चतुर्थांशों का क्षेत्रफल
= (196 – 154) cm2
= 42 cm2

प्रश्न 8.
संलग्न आकृति एक दौड़ने का पथ (racing track) दर्शाती है, जिसके बाएँ और दाएँ सिरे अर्धवृत्ताकार हैं।
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 16
दोनों आंतरिक समांतर रेखाखंडों के बीच की दूरी 60m है तथा इनमें से प्रत्येक रेखाखंड 106m लंबा है। यदि यह पथ 10m चौड़ा है, तो ज्ञात कीजिए।
(i) पथ के आंतरिक किनारों के अनुदिश एक पूरा चक्कर लगाने में चली गई दूरी
(ii) पथ का क्षेत्रफल।
हल :
यहाँ पर,

(i) प्रत्येक आंतरिक अर्धवृत्त का व्यास = 60m
प्रत्येक आंतरिक अर्धवृत्त की त्रिज्या (r) = 60/2 = 30 m
दोनों आंतरिक अर्धवृत्तों की परिधि = 2 x प्रत्येक अर्धवृत्त की परिधि
= 2 x (πr)
= 2 x 22/7 x 30m
1320/7 m
= Sm आंतरिक दोनों किनारों की दूरी = AB + CD = (106 + 106)m
= 212 m
अतः पथ के आंतरिक किनारों के अनुदिश एक पूरा चक्कर लगाने में तय दूरी
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 18

(ii) आंतरिक आयत का क्षेत्रफल = 106 x 60 m2 = 6360 m2
बाहरी आयत का क्षेत्रफल = 106 x 80 m2 = 8480 m2
आयताकार छायांकित आकृति का क्षेत्रफल = बाहरी क्षेत्रफल – आंतरिक क्षेत्रफल
= (8480 – 6360)m2 = 2120m2
प्रत्येक बाहरी अर्धवृत्त की त्रिज्या (R) = 80/2 = 40m
प्रत्येक अर्धवृत्ताकार छायांकित आकृति का क्षेत्रफल= 1/2[πR2 – πr2]
1/2×22/7 [(40)2 – (30)2] cm = ” x 700 m2 = 1100 m2
वृत्तों से संबंधित क्षेत्रफल दोनों अर्धवृत्ताकार छायांकित आकृतियों का क्षेत्रफल = 2 x 1100 m2
= 2200 m2
अतः छायांकित कुल पथ का क्षेत्रफल = (2120 + 2200) m2
= 4320 m2

प्रश्न 9.
संलग्न आकृति में, AB और CD केंद्र 0 वाले एक वृत्त के दो परस्पर लंब व्यास हैं तथा OD छोटे वृत्त का व्यास है। यदि OA = 7cm है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 19

प्रश्न 10.
एक समबाहु त्रिभुज ABC का क्षेत्रफल 17320.5 cm है। इस त्रिभुज के प्रत्येक शीर्ष को केंद्र मानकर त्रिभुज की भुजा के आधे के बराबर की त्रिज्या लेकर एक वृत्त खींचा जाता है (देखिए संलग्न आकृति)। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
(π = 3.14 और √3 = 1.73205 लीजिए।)
हल :

प्रश्न 11.
एक वर्गाकार रूमाल पर, नौ वृत्ताकार डिज़ाइन बने हैं, जिनमें से प्रत्येक की। त्रिज्या 7cm है (देखिए संलग्न आकृति)। रूमाल के शेष भाग का क्षेत्रफल ज्ञात कीजिए।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 22
यहाँ पर,
रूमाल के प्रत्येक वृत्ताकार डिजाइन की त्रिज्या (r) = 7 cm
रूमाल के प्रत्येक वृत्ताकार डिजाइन का व्यास (d) = 2 x r cm
= 2×7 cm
= 14 cm
वर्गाकार रूमाल की प्रत्येक भुजा = 3 x प्रत्येक वृत्त का व्यास
= 3 x 14 cm = 42 cm
रूमाल के 9 वृत्ताकार डिजाइनों का क्षेत्रफल = 9 x πr²
= 9 x 22/7 x 7 x 7 cm2
= 1386 cm2
वर्गाकार रूमाल का क्षेत्रफल = भुजा – भुजा
= 42 x 42 cm2 = 1764 cm2
अतः . वृत्ताकार डिजाइनों को छोड़कर शेष रूमाल का क्षेत्रफल = (1764 – 1386) cm2
= 378 cm2

प्रश्न 12.
संलग्न आकृति में, OACB केंद्र 0 और त्रिज्या 3.5 cm वाले एक वृत्त का चतुर्थांश है। यदि OD = 2cm है, तो निम्नलिखित के क्षेत्रफल ज्ञात कीजिए-
(i) चतुर्थांश OACB (ii) छायांकित भाग
हल :


(i) यहाँ पर, चतुर्थांश OACB की त्रिज्या (r) = 3.5 cm
चतुर्थांश OACB का क्षेत्रफल = πr2/4
22/7×1/4 x 3.5 x 3.5 cm2
= 9.625 cm2

(ii) अब समकोण AOBD का क्षेत्रफल = 1/2 x OB x OD
1/2 x 3.5 x 2 cm2
= 3.5 cm2
अतः आकृति के छायांकित भाग का क्षेत्रफल = (चतुर्थांश OACB — AOBD) का क्षेत्रफल
= (9.625 -3.5) cm2
= 6.125 cm2

प्रश्न 13.
संलग्न आकृति में, एक चतुर्थांश OPBQ के अंतर्गत एक वर्ग OABC बना हुआ . है। यदि OA = 20 cm है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। (π = 3.14 लीजिए।)
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 24
यहाँ पर, वर्ग OABC में, भुजा OA = भुजा AB = 20 cm
वर्ग OABC का क्षेत्रफल = भुजा x भुजा
= 20 x 20 cm2 = 400 cm2

= 628 cm2
अतः आकृति के छायांकित भाग का क्षेत्रफल = (चतुर्थांश OPBQ – वर्ग OABC) का क्षेत्रफल
= (628 – 400) cm2
= 228 cm2

प्रश्न 14.
AB और CD केंद्र O तथा त्रिज्याओं 21cm और 7cm वाले दो संकेंद्रीय वृत्तों के क्रमशः दो चाप हैं (देखिए संलग्न आकृति)। यदि ∠AOB = 30° है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 26
यहाँ पर,
त्रिज्यखंड OAB की त्रिज्या (R) = 21 cm
चाप AB द्वारा केंद्र O पर अंतरित कोण (θ) = 30°
त्रिज्यखंड OAB का क्षेत्रफल = θ/360 x πR2
30/360×22/7 x 21 x 21 cm2
231/2 cm2
त्रिज्यखंड OCD की त्रिज्या (r) = 7 cm
चाप CD द्वारा केंद्र O पर अंतरित कोण (θ) = 30°
त्रिज्यखंड OCD का क्षेत्रफल = θ/360 x πr2
30/360×22/7 x 7 x 7 cm2
77/6 cm2
अतः आकृति के छायांकित भाग का क्षेत्रफल = (त्रिज्यखंड OAB — त्रिज्यखंड OCD) का क्षेत्रफल
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 27

प्रश्न 15.
संलग्न आकृति में, ABC त्रिज्या 14 cm वाले एक वृत्त का चतुर्थांश है तथा BC को व्यास मान कर एक अर्धवृत्त खींचा गया है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 28
यहाँ पर, समकोण त्रिभुज ABC में, AB = AC = 14 cm
(वृत्त की त्रिज्या के समान)

समकोण त्रिभुज ABC का क्षेत्रफल = 1/2 x AC x AB
1/2 x 14 x 14 cm2 = 98 cm2
अतः आकृति में दर्शाए गए छायांकित. भाग का क्षेत्रफल
= BC पर बने अर्धवृत्त का क्षेत्रफल – (चतुर्थांश का क्षेत्रफल – ΔABC का क्षेत्रफल)
= [154 -(154-98)] cm2
= [154 – 154 + 98] cm2 = 98 cm2

प्रश्न 16.
संलग्न आकृति में, छायांकित डिज़ाइन का क्षेत्रफल ज्ञात कीजिए, जो 8cm त्रिज्याओं वाले दो वृत्तों के चतुर्थांशों के बीच उभयनिष्ठ है।
हल :
HBSE 10th Class Maths Solutions Chapter 12 वृत्तों से संबंधित क्षेत्रफल Ex 12.3 30
यहाँ पर,
आकृति में छायांकित डिजाइन का क्षेत्रफल = 2[चतुर्थांश ABD का क्षेत्रफल – समकोण ΔABD का क्षेत्रफल)

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *