MP 11th Maths

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी

Ex 9.1

प्रश्न 1 से 6 तक के अनुक्रमों में प्रत्येक के प्रथम पाँच पद लिखिए, जिनका गवाँ पद दिया गया है :
प्रश्न 1.
an = n(n+ 2).
हल:
an = n(n + 2)
n का मान 1, 2, 3, 4, 5 रखने पर
a1 = 1 x 3 = 3, a2 = 2 x 4 = 8, a3 = 3 x 5 = 15, a4 = 4 x 6 = 24, a5 = 5 x 7 = 35
अतः दिए गए अनुक्रम के पाँच पद 3, 8, 15, 24, 35 हैं।

प्रश्न 2.

प्रश्न 3.
an = 2n.
हल:
an = 2n में n का मान 1, 2, 3, 4, 5 रखने पर

अतः अनुक्रम के पाँच पद 2, 4, 8, 16, 32 हैं।

प्रश्न 4.

हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.1 img-2

प्रश्न 5.
an = (1)n1 5n+1.
हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.1 img-3

प्रश्न 6.

निम्नलिखित प्रश्न 7 से 10 तक के अनुक्रमों में प्रत्येक का वांछित पद ज्ञात कीजिए, जिनका n वाँ पद दिया गया है:
प्रश्न 7.
an = 4n – 3, 417, a24.
हल:
an = 4n – 3
n = 17 लेने पर,
a17 = 4 x 17 – 3 = 68 – 3 = 65
n = 24 लेने पर,
a24 = 4 x 24 – 3 = 96 – 3 = 93.

प्रश्न 11 से 13 तक प्रत्येक अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए:
प्रश्न 11.

प्रश्न 12.

हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.1 img-6

प्रश्न 13.

प्रश्न 14.
Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है :

Ex 9.2

1 से 2001 तक के विषम पूर्णांकों का योग ज्ञात कीजिए।
हल:
श्रेणी 1 + 3 + 5 + 7 +….+ 2001
मान लीजिए n वाँ पद 2001 तब
2001 = a + (n – 1)d
= 1+ (n – 1). 2
= 1001

प्रश्न 2.
100 तथा 1000 के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो 5 के गुणज हों।
हल:
100 और 1000 के बीच की संख्याएँ जो 5 की गुणज हैं उनका योगफल
= 105 + 110 + 115 + ….+ 995
मान लीजिए 995, n वाँ पद है।
n वाँ पद = a + (n – 1) d
⇒ 995 = 105 + (n – 1)5
5. (n – 1) = 995 – 105
= 890

प्रश्न 3.
किसी समांतर श्रेणी में प्रथम पद 2 है तथा प्रथम पांच पदों का भागफल, अगले पांच पदों के योगफल का एक चौथाई है। दर्शाइए कि 20 वाँ पद – 112 है।
हल:
मान लीजिए, d सार्वअंतर है जबकि a = 2 .
प्रथम पाँच पदों का योगफल = 5/2[2 × 2 + 4 × d]
= 5 [2 + 2d] = 10 (1 + d)
तथा 6 वाँ पद = 2 + (6 – 1). d = 2 + 5d

प्रश्न 4.

प्रश्न 5.
किसी समांतर श्रेढ़ी का p वाँ पद 1/q तथा q वाँ पद 1/p हो, तो सिद्ध कीजिए कि प्रथम pq पदों का योग 1/2(pq + 1) होगा, जहाँ p ≠ q.
हल:
मान लीजिए प्रथम पद = a
और सार्व अंतर = d
∴ p वाँ पद = a + (p – 1) d = 1/q …..(1)
q वाँ पद = a + (q – 1)d = 1/p …..(2)
समी (2) को (1) में से घटाने पर,
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.2 img-3

प्रश्न 6.
यदि किसी समांतर श्रेणी 25, 22, 19,…. के कुछ पदों का योगफल 116 है तो अंतिम पद ज्ञात कीजिए।
हल:
दिया है:
a = 25, d = 22 – 25 = – 3
मान लीजिए इस श्रेणी में n पद हैं।
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.2 img-5
अतः 8वाँ पद = a + (n – 1)d
= 25 + (8 – 1) (- 3)
= 25 – 21
= 4

प्रश्न 7.
उस समांतर श्रेणी के n पदों का योगफल ज ज्ञात कीजिए जिसका वॉ पद 5k +1 है।
हल :
दिया है, k वाँ पद = Tk = 5k+1
k = 1, 2 रखने पर
T1 = 5 × 1 +1
= 5 + 1 = 6
T2 = 5 × 2 +1
= 10 + 1 = 11
d = T2 – T1
= 11 – 6 = 5

प्रश्न 8.
यदि किसी समांतर श्रेणी के पदों का योगफल pn+ar है, जहाँ p तथा अचर हों तो सार्वअंतर ज्ञात कीजिए।
हल:

प्रश्न 9.
दो समांतर श्रेणियों के n पदों के योगफल का अनुपात 5n + 4 : 9n + 6 हो, तो उनके 18 वें पदों का अनुपात ज्ञात करो।
हल:
मान लीजिए समातर श्रेणियों के प्रथम पद a1, a2, तथा सार्वअंतर d1 और d2 हैं। यदि Sn Sn‘ उनके संगत योगफल हैं। T18 और T18 उनके संगत 18 वें पद हैं।
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.2 img-7

प्रश्न 10.
यदि किसी समांतर श्रेणी के प्रथम p पदों का योग, प्रथम q पदों के योगफल के बराबर हो, तो प्रथम (p + q) पदों का योगफल ज्ञात कीजिए।
हल:
मान लीजिए a प्रथम पद व d सार्व अंतर है।
∴ p पदों का योगफल = p/2[2a + (p – 1)d] …. (1)
q पदों का योगफल = q/2[2a + (q – 1)d] ….(2)
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.2 img-17

प्रश्न 11.
यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, c, हो तो सिद्ध कीजिए कि:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.2 img-11

प्रश्न 12.
किसी समांतर श्रेणी के m तथा n पदों के योगफलों का अनुपात m2 : n2 है तो दर्शाइए कि m वें तथा n वें पदों का अनुपात (2m – 1) : (2n – 1) है।
हल:
मान लीजिए समांतर श्रेणी का पहला पद a और सार्व अंतर d है।

प्रश्न 13.
यदि किसी समांतर श्रेणी के n पदों का योगफल 3n2 + 5n है तथा इसका m वाँ पद 164 है तो m का मान ज्ञात करो।
हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.2 img-13

प्रश्न 14.
8 और 26 के बीच ऐसी 5 संख्याएँ डालिए ताकि प्राप्त अनुक्रम एक समांतर श्रेणी बन जाए।
हल:
माना A1, A2, A3, A4, A5, संख्या 8 और 26 के बीच डाली गई हैं। जिससे 8, A1, A2, A3, A4, A5, 26 समांतर श्रेणी का रूप है।
इस अनुक्रम के कुल पद = 7
पहला पद = 8,
अंतिम पद = 26, यदि सार्व अंतर d हो, तो
26 = a + (n – 1)d = 8 + (7 – 1)d
6d = 26 – 8 = 18,
d = 18/6 = 3
दूसरा पद = A1 = 8 + 3 = 11
A2 = 11 + 3 = 14
A3 = 14 +3 = 17
A4 = 17 + 3 = 20
A5 = 20 + 3 = 23
अतः A1, A2, A3, A4, A5, के मान क्रमशः 11, 14, 17, 20, 23 हैं।

प्रश्न 15.

प्रश्न 16.
m संख्याओं को 1 तथा 31 के बीच रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है। और 7वीं एवं (m – 1) वीं संख्याओं का अनुपात 5 : 9 है, तो m का मान ज्ञात कीजिए।
हल:
मान लीजिए 1, A1, A2,…., Am, 31, समांतर श्रेणी है।
कुल पद = m + 2
अंतिम पद = 31
31 = a + (m + 2 – 1)d = 1 + (m + 1)d
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.2 img-15

प्रश्न 17.
एक व्यक्ति ऋण का भुगतान 100 रुपए की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में 5 रुपए प्रति माह बढ़ाता है, तो 30 वीं किश्त की राशि क्या होगी?
हल:
पहली किश्त a = 100 रु.
हर माह किश्त में बढ़ोत्तरी = सार्व अंतर = 5 रु.
30वीं किश्त = समांतर श्रेणी का 30वाँ पद
= a + (n – 1)d = 100 + (30 – 1) 5
= 100 + 29 × 5 = 100 + 145 = 245 रु.।

एक बहुभुज के दो क्रमिक अंत: कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
हल:
एक n भुजाओं वाले बहुभुज के अंतः कोणों का योग
= 180n – 360 …(1)
दिया है कि एक अंतः कोण = समांतर श्रेणी का पहला पद = 120°
क्रमिक अंतः कोणों का अंतर = समांतर श्रेणी का सार्व अंतर = d = 5
∴ n अंतः कोणों का योग = समांतर श्रेणी के n पदों का योग ।

Ex 9.3

प्रश्न 1.

प्रश्न 2.
उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।
हल:
मान लीजिए गुणोत्तर श्रेणी का पहला पद = a
सार्व अनुपात = 2

प्रश्न 3.
किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11 वाँ पद क्रमशः p, q तथा s हैं, तो दिखाइए कि q2 = ps.
हल:
मान लीजिए गुणोत्तर श्रेणी का पहला पद = a
सार्व तथा अनुपात =r
5वाँ पद = ar5 – 1 = ar4 = p
8वाँ पद = ar8 – 1 = ar7 = q
11वाँ पद = ar11 – 1= ar10 = s
बायाँ पक्ष = q2 = (ar7)2 = a2 . r14
दायाँ पक्ष = ps = ar4 ar10= a2 . r14
अतः q2 = ps.

प्रश्न 4.
किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद – 3 है, तो 7 वाँ पद ज्ञात कीजिए।
हल:
मान लीजिए गुणोत्तर श्रेणी का पहला पद, a = – 3
तथा सार्व-अनुपात = r
चौथा पद = ar4 – 1 = ar3 = – 3r3
दूसरा पद = ar = – 3r
दिया है : चौथा पद = (दूसरे पद)2
⇒ – 3r3 = (-3r)2 = 9r2
r= – 3
7वाँ पद = ar71 = ar6 = (3)(3)6
= (- 3)7 = – 2187.

प्रश्न 5.
अनुक्रमों का कौन सा पद :

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-3

प्रश्न 7 से 10 तक प्रत्येक गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
प्रश्न 7.
0.15, 0.015, 0.0015,…..20 पदों तक।
हल:
गुणोत्तर श्रेणी 0.15, 0.015, 0.0015
पहला पद, a = 0.15

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-5

प्रश्न 9.
1, – a, a2, – a3,…. पदों तक (यदि a ≠ – 1).
हल:
गुणोत्तर श्रेणी 1, – a, a, 2, – a3,…..

प्रश्न 10.
x3, x5, x7, …..n पदों तक (यदि x ≠ ± 1).
हल:
गुणोत्तर श्रेणी x3, x5, x7, …..
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-8

प्रश्न 11.

प्रश्न 12.
एक गुणोत्तर श्रेणी के तीन पदों का योगफल 39/10 है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।
हल:
मान लीजिए गुणोत्तर श्रेणी के तीन पद a/r, a तथा ar हैं।
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-10

प्रश्न 13.
गुणोत्तर श्रेणी 3,32, 33,… के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।
हल:
मान लो गुणोत्तर श्रेणी के कुल पद = n

प्रश्न 14.
किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल 16 है तथा अगले 3 पदों का योग 128 है तो गुणोत्तरं श्रेणी का प्रथम पद, सार्व अनुपात तथा n पदों का योगफल ज्ञात कीजिए।
हल:
मान लीजिए गुणोत्तर श्रेणी a, ar, ar2,…. है।
पहला पद = a, सार्व अनुपात = r

प्रश्न 15.
एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है, तो S7 ज्ञात कीजिए।
हल:
गुणोत्तर श्रेणी का पहला पद, a = 729
मान लीजिए सार्व अनुपात = r
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-13

प्रश्न 16.
एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल – 4 है तथा 5 वाँ पद तृतीय पद का 4 गुना है।
हल:
मान लीजिए गुणोत्तर श्रेणी का पहला पद = a
सार्व अनुपात = r
पहले दो पदों का योग = a + ar = – 4 ……(1)
5 वाँ पद = ar4, तीसरा पद = ar2
5 वाँ पद = 4 × तीसरा पद
ar4 = 4 × ar2
∴ r2 = 4 या r = ± 2
समी (1) में r = 2 रखने पर
a (1 + 2) = – 4
∴ a = – latex]\frac{4}{3}[/latex]
∴ गुणोत्तर श्रेणी – 5, 3…. है
और जब r = – 2, ∴ a (1 – 2) = – 4, या a = 4
गुणोत्तर श्रेणी है: 4, – 8, 16, – 32,….

प्रश्न 17.
यदि किसी गुणोत्तर का 4वाँ, 10वाँ तथा 16वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।
हल:
मान लीजिए गुणोत्तर श्रेणी का पहला पद = a,
सार्व अनुपात =r
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-14

प्रश्न 18.
अनुक्रम 8, 88, 888, …. के n पदों का योग ज्ञात कीजिए।
हल:
मान लीजिए S = 8 + 88 + 888 + … पदों तक
= 8 [1 + 11 + 111 + … n पदों तक]

प्रश्न 19.
अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, 1/2 के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।
हल:
अनुक्रम 2, 4, 8, 16, 32 तथा 128, 32, 8, 2, 1/2 के संगत पदों के गुणनफल 2 × 128, 4 × 32, 8 × 8, 16 × 2, 32 × 1/2 या 256, 128, 64, 32, 16.
गुणोत्तर श्रेणी का पहला पद, a = 256
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-16

प्रश्न 20.
दिखाइए कि अनुक्रम a, ar, ar2,… arn – 1 तथा A, AR, Ar2,…. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। .
हल:
%अनुक्रम a, ar, ar2,….arn – 1 तथा A, AR, AR2,… ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम
या aA, arAR, ar2. AR2, ….
या aA, aArR, aAr2 R2, ….
स्पष्ट है कि यह पद गुणोत्तर श्रेणी में है।
इसका पहला पद = aA

प्रश्न 21.
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो, तथा दूसरा पद चौथे पद से 18 अधिक हो।
हल:
मान लीजिए गुणोत्तर श्रेणी a, ar, ar2, ar3,… है
तीसरा पद = ar2, प्रथम पद = a
∴ ar2 – a = 9 …(1)
दूसरा पद = ar, चौथा पद = ar3
ar – ar3 = 18 …(2)
समी (1) को (2) से भाग देने पर,

प्रश्न 22.
यदि किसी गुणोत्तर श्रेणी का p वाँ, q वाँ तथा वा पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aqr brpcpq = 1.
हल:
मान लीजिए गुणोत्तर श्रेणी का पहला पद A और सार्व अनुपात R है
p वाँ पद = ARp – 1 = a ….(1)
q वाँ पद = ARq – 1 = b ….(2)
r वाँ पद = ARr – 1 = c …..(3)
समी. (1) की q – 7, समी (2) की r – p, समी (3) की p – q घात का प्रयोग करने पर,
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-18

प्रश्न 23.
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n.
हल:
मान लो गुणोत्तर श्रेणी का सार्व अनुपात है।
पहला पद = a, n वाँ पद = ar n – 1 = b
P = n पदों का गुणनफल
= a. ar. ar2. ar3 ….arn – 1

प्रश्न 24.
दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों का योगफल तथा (n + 1) वें पद से (2n)वें पद तक के पदों के योगफल का अनुपात में है।
हल:
मान लीजिए गुणोत्तर श्रेणी का पहला पद a और सार्व अनुपात = 1/rn हों, तब
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-20

प्रश्न 25.

हल:
मान लीजिए गुणोत्तर श्रेणी का सार्व अनुपात 7 है।

प्रश्न 26.
ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 और 81 के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।
हल:
मान लीजिए G1, G2 ऐसी दो संख्याएँ हैं जिससे 3, G1, G2, 81 गुणोत्तर श्रेणी बनाते हैं।
यह कुल चार पद हैं। यदि r सार्व अनुपात हो तो
∴ 81 = 3.r4 – 1 = 3 . r3
⇒ r=3
G1 = 3r = 3 . 3 = 9
G2 = 3r2 = 3.32 = 27
अतः संख्याएँ 9 और 27 हैं।

प्रश्न 27.

प्रश्न 28.
दो संख्याओं का योगफल उनके गुणोत्तर माध्य का 6 गुना है तो दिखाइए कि संख्याएँ (3 + 22) : (3 – 22) के अनुपात में हैं। .
हल:
मान लीजिए संख्याएँ a और b हों, तब
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-23

प्रश्न 29.
यदि A तथा G दो धनात्मक संख्याओं के बीच क्रमशः समांतर तथा गुणोत्तर माध्य हों, तो सिद्ध करो कि संख्याएँ

हल:
मान लीजिए संख्याएँ a और b हैं।
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.3 img-25

प्रश्न 30.
किसी कल्चर में बैक्टीरिया की संख्या प्रत्येक घण्टे के पश्चात् दुगुनी हो जाती है। यदि प्रारंभ में उसमें 30 बैक्टीरिया उपस्थित थे, तो बैक्टीरिया की संख्या दूसरे, चौथे तथा nवें घण्टों बाद क्या होगी ?
हल:
प्रारम्भ में बैक्टीरिया की संख्या a = 30
प्रत्येक घण्टे बाद बैक्टीरिया की संख्या दुगुनी हो जाती है
∴ सार्व अनुपात = 2.
दूसरे घण्टे बाद बैक्टीरिया संख्या = ar2 = 30 × 22 = 120
चौथे घण्टे बाद बैक्टीरिया संख्या = ar4 = 30 × 24 = 480
n वें घण्टे बाद बैक्टीरिया संख्या = arn = 30 × 2n.

प्रश्न 31.
500 रुपए धनराशि 10% वार्षिक चक्रवृद्धि ब्याज पर 10 वर्षों बाद क्या हो जाएगी, ज्ञात कीजिए ?
हल:
माना A मिश्रधन, P मूलधन, r% प्रतिवर्ष ब्याज की दर तथा n वर्ष का समय हो, तो

प्रश्न 32.
यदि किसी द्विघात समीकरण के मूलों के समांतर माध्य एवं गुणोत्तर माध्य क्रमशः 8 तथा 5 हैं, तो द्विघातीय समीकरण ज्ञात कीजिए।
हल:
मान लीजिए द्विघात समीकरण के मूल α और β हों, तब

Ex 9.4

प्रश्न 1 से 7 तक प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए :
प्रश्न 1.
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ….
हल:
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 +……
प्रत्येक पद के दो गुणनखण्ड हैं।
पहले गुणनखंडों से बनी श्रेढ़ी 1, 2, 3, 4……
∴ n वाँ पद = n
दूसरे गुणनखंडों से बनी श्रेढ़ी 2, 3, 4, 5……
n वाँ पद = (n + 1)
1 × 2 + 2 × 3 + 3 × 4+…. का n वाँ पद = n(n + 1) = n2 + n

प्रश्न 2.
1 × 2 × 3 + 2 × 3 × 4+ 3 × 4 × 5 +…..
हल:
1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +……
पहले गुणनखंडों की श्रेढ़ी 1, 2, 3, 4, …..n
n वाँ पद = n
दूसरे गुणनखंडों की श्रेढ़ी 2, 3, 4, 5,….
n वाँ पद = (n + 1)
तीसरे गुणनखंडों की श्रेढ़ी. 3, 4, 5….
n वाँ पद = (n + 2)
∴ 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +…… का n वाँ पद
= n(n + 1)(n + 2) = n(n2 + 3n + 2)
=n3+ 3n2 + 2n
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.4 img-2

 

प्रश्न 3.
3 × 12 + 5 × 22 + 7 × 32 +……
हल:
3 × 12 + 5 × 22 + 7 × 32 +…..
पहले गुणनखंड 3, 5, 7,….. का n वाँ पद = 3 + (n – 1). 2 = 2n + 1
दूसरे गुणनखंड 12, 22, 32….. का nवाँ पद = n2
∴ 3 × 12 + 5 × 22 + 7 × 32 +…… का गवाँ पद
= (2n + 1) n2 = 2n3 + n2

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.4 img-4

प्रश्न 4.

प्रश्न 5.
52 + 62 + 72 +….+ 202.
हल:
n वें पद वाली इस श्रेणी में,
(n + 4)2 = n2 + 8n + 16
Sn = ΣTn = Σn2 + 8 Σn + (16 + 16 +……n. पदों तक)

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.4 img-6

प्रश्न 6.
3 × 8 + 6 × 11 + 9 × 14 +…..
हल:
3 × 8 + 6 × 11 + 9 × 14 +….
3, 6, 9 का n वाँ पद = 3n
8, 11, 14,…..का n वाँ पद = 8 + (n – 1). 3 = 3n + 5
∴ 3 × 8 + 6 × 11 + 9 × 14 +……का nवाँ पद = 3n(3n + 5)
= 3 (3n2 + 5n)
दी हुई श्रेढ़ी के n पदों का योगफल

प्रश्न 7.
12 + (12 + 22) + (12 + 22 + 32) +…..
हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.4 img-8
दी हुई श्रेढ़ी के n पदों का योगफल

प्रश्न 8 से 10 तक प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए जिसका nवाँ पद दिया है :
प्रश्न 8.
n(n + 1)(n + 4).
हल:
Tn = n(n + 1)(n + 4) = n(n2 + 5n + 4)
= n3 + 5n2 + 4n
दी हुई श्रेढ़ी के n पदों का योग = Σn3 + 5Σn2 + 4Σn

प्रश्न 9.
n2 + 2n.
हल:
दी हुई श्रेढ़ी के n पदों का योग
= Σn2 + Σ2n
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी Ex 9.4 img-10

प्रश्न 10.
(2n – 1).
हल:
Tn = (2n – 1)2 = 4n2 – 4n + 1
दी हुई श्रेढ़ी के n पदों का योग

विविध प्रश्नावली

प्रश्न 1.
दर्शाइए कि किसी समांतर श्रेढ़ी के (m + n) वें तथा (m – n) पदों का योग m वें पद का दुगुना है।
हल:
मान लीजिए समांतर श्रेढ़ी का पहला पद a और सार्व अंतर d है।

प्रश्न 2.
यदि किसी समांतर श्रेढ़ी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है तो संख्याएँ ज्ञात कीजिए।
हल:
मान लीजिए समांतर श्रेढ़ी की तीन संख्याएँ a – d, a और a + d हैं।
तीनों संख्याओं का योग = (a – d) + a + (a + d) = 24
∴ 3a = 24 या a = 8
तीन संख्याओं का गुणनफल = (a – d). a .(a + a)
= a (a2 – d2)
= 8(64 – d2) [∵ a = 8]
या 8(64 – d2) = 440
या 64 – d2 = 55
d2 = 64 – 55 = 9 या d = 3
अतः अभीष्ट संख्याएँ 5, 8, 11.

 

प्रश्न 3.
माना कि किसी समांतर श्रेढ़ी के n, 2n तथा 3n पदों का योगफल क्रमशः S1, S2 तथा S3 हैं, तो दिखाइए कि S3 = 3(S2 – S1).
हल:
मान लीजिए समांतर श्रेढ़ी का पहला पद a और सार्व अंतर d है।

प्रश्न 4.
200 और 400 के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित हों।
हल:
200 से 400 के मध्य आने वाली संख्याएँ 203, 210, 217,…….., 399
मान लीजिए 399, n वाँ पद है।
∴ 399 = a + (n – 1).7
= 203 + 7 (n – 1)
या 399 – 203 = 196 = 7(n – 1)

प्रश्न 5.
1 से 100 तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो 2 या 5 से विभाजित हों।
हल:
2 से विभाजित होने वाले पूर्णांक 2, 4, 6,…., 100
इनकी कुल संख्या = 50
5 से विभाजित होने वाले पूर्णांक 5, 10, 15, 20,……100
इनकी कुल संख्या = 20
2 और 5 दोनों से विभाजित होने वाले पूर्णांक 10, 20, 30,…., 100
इनकी कुल संख्या = 10
1 से 100 तक आने वाले पूर्णांक जो 2 या 5 से विभाजित हों, तब
= (2 + 4 + 6 + ……50 पदों तक) + (5 + 10 + 15 +…… 20 पदों तक) – (10 + 20 + 30 +……10 पदों तक)

प्रश्न 6.
दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।
हल:
दो अंको की वे संख्याएँ जो 4 से विभाजित करने पर 1 शेष रहता है 13, 17, 21,….., 97
मान लीजिए n पद हों, तब n वाँ पद,
97 = 13 + (n – 1). 4
∴ 84 = (n – 1) × 4
∴ n = 22
∴ 13 + 17 + 21 +…..+ 97 = 22/2[26 + (22 – 1).4]
= 11 × (26 + 84)
= 11 × 110
= 1210.

प्रश्न 8.
गुणोत्तर श्रेढ़ी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 और 2 हैं।
अंतिम पद तथा पदों की संख्या ज्ञात करो।
हल:
दी हुई गुणोत्तर श्रेणी
5 + 10 + 20 + 40 +…….

∴ 2n – 1 = 63
या 2n = 64 = 26
n = 6
6 वाँ पद = 5 × 26 – 1
= 5.25
= 5 × 32 = 160.

प्रश्न 9.
किसी गुणोत्तर श्रेढ़ी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो, तो गुणोत्तर श्रेढ़ी का सार्व अनुपात ज्ञात कीजिए।
हल:
मान लीजिए गुणोत्तर श्रेढ़ी का सार्व अनुपात r है।
तीसरा पद = ar2 = 1.r2 = r2
पाँचवाँ पद = ar4 = r4
तीसरे और पाँचवें पद का योग = r2 + r4 = 90
r4 + r2 – 90 = 0
या (r2 + 10)(r2 – 9) = 0
∴ r2 = – 10 मान्य नहीं है।
∴ r2 – 9 = 0, r2 = 9
∴ r = ± 3.

प्रश्न 10.
किसी गुणोत्तर श्रेढ़ी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेढ़ी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।
हल:
मान लीजिए गुणोत्तर श्रेढ़ी की तीन संख्याएँ a, ar, ar2 हैं।
तीनों पदों का योग = a + ar + ar2 = 56 …..(1)
इन संख्याओं में से 1, 7, 21 घटाने पर संख्याएँ
ar – 1, ar – 7, ar2 – 21 समांतर श्रेढ़ी में हैं।
∴ 2(ar – 7) = (a – 1) + (ar2 – 21)
या 2ar – 14 = ar2 + a – 22
ar2 – 2ar + a = 22 – 14 = 8 ….(2)
समी. (1) को (2) से भाग देने पर

प्रश्न 11.
किसी गुणोत्तर श्रेढ़ी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।
हल:
मान लीजिए गुणोत्तर श्रेढ़ी का पहला पद = a सार्व अनुपात = r और पदों की संख्या = 2n

प्रश्न 12.
एक समांतर श्रेढ़ी के प्रथम चार पदों का योगफल 56 है। अंतिम चार पदों का योगफल 112 है। यदि इसका प्रथम पद 11 है, तो पदों की संख्या ज्ञात कीजिए।
हल:
मान लीजिए समांतर श्रेणी
a + (a + d) + (a + 2a) +……+ l जबकि l अंतिम पद n वाँ पद है।
प्रथम 4 पदों का योगफल = 4/2[2a + (4 – 1) d]
= 2[22 + 3d] [∵ a = 11]
दिया है: 2[22 + 3d) = 56
⇒ 3d + 22 = 28 या d = 2
अंतिम पद = a + (n – 1) d = 11 + (n – 1).2
= 2n + 9
अंतिम चार पद 2n + 9, 2n + 7, 2n + 5, 2n + 3
इनका योगफल = 4/2[2(2n + 9) + (4 – 1). (- 2)]
= 2[4n + 18 – 6]
= 2[4n + 12]
दिया है : 2(4n + 12) = 112
∴ 4n + 12 = 56
4n = 56 – 12 = 44
∴ n = 11.

प्रश्न 13.

हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-4
अतः a, b, c, d गुणोत्तर श्रेढ़ी में है।

प्रश्न 14.
किसी गुणोत्तर श्रेढ़ी में S,n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn.
हल:
मान लीजिए गुणोत्तर श्रेढ़ी a + ar + ar2 +….. + arn – 1
इन n पदों का गुणनफल, P = a. ar . ar2….. arn – 1
= an. r1 + 2 +…+ (n – 1)

प्रश्न 15.
किसी समांतर श्रेढ़ी का p वाँ, धूवाँ, वाँ पद क्रमशः a, b, c हैं, तो सिद्ध कीजिए
(q – r)a + (r – p)b + (p – q) c = 0.
हल:
मान लीजिए समांतर श्रेणी
A + (A + d) + (A + 2d) +…. है।
p वाँ पद = A + (p – 1) d = a ….(1)
q वाँ पद = A + (q – 1) d = b ….(2)
r वाँ पद = A + (r – 1) d=c …..(3)
समी (2) में से समी (3) को, समी (3) में से समी (1) को, समी (1) में से समी (2) को घटाने पर
(q – r)d = b – c ….(4)
(r – p)d = c – a …(5)
(p – q)d = a – b ….(6)
समीकरण (4), (5) तथा (6) को क्रमशः a, b तथा c से गुणा करके जोड़ने पर,
a(q – r)d + b(r – p)d + c(p – d)d
= a(b – c) + b(c – a) + c(a – b)
= ab – ac + bc – ba + ca – bc
= 0
दोनों पक्षों में d से भाग देने पर,
(q – r)a + (r – p)b + (p – q)c = 0.

प्रश्न 16.

हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-6

प्रश्न 17.

प्रश्न 18.
यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0 के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेढ़ी के रूप में हैं। सिद्ध कीजिए कि
(q+ p) : (q – p) = 17 : 15.
हल:
यदि समीकरण Ax2 + Bx + C = 0 के मूल a , B हैं, तो

दिया है कि x2 – 3x + p = 0 के मूल a, b हैं
∴ a+ b = 3, ab = p …..(1)
इसी प्रकार x2 – 12x + q = 0 के मूल c, d हैं
∴ c + d = 12. cd = q …..(2)
अब a, b, c, d गुणोत्तर श्रेढ़ी में हैं, जिसका मान लीजिए r सार्व अनुपात है।
∴ b = ar, c = ar2, d= ar3
a + b = 3, a + ar = 3 …(3)
c + d = 12 या ar2 + ar3 = 12 …(4)
समी (3) को (4) से भाग देने पर,
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-8

प्रश्न 19.
दो धनात्मक संख्याओं a और b के बीच समांतर माध्य तथा गुणोत्तर माध्य का अनुपात m : n है। दर्शाइए कि

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-10

प्रश्न 21.
निम्नलिखित श्रेढ़ियों के n पदों का योग ज्ञात कीजिए :
(i) 5 + 55 + 555+ ……
(ii) 0.6 + 0.66 + 0.666 +…..
हल:
(i) S = 5 + 55 + 555 +…..n पदों तक
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-12
(ii) S = 0.6 + 0.66 + 0.666 +….n पदों तक

प्रश्न 22.
श्रेढ़ी का 20वाँ पद ज्ञात कीजिए :
2 × 4 + 4 × 6 + 6 × 8 +…..+ n पदों तक
हल:
2, 4, 6,….. का 20 वाँ पद = 2n = 2 × 20 = 40.
4, 6, 8….. का 20 वाँ पद = 4 + 19 × 2 = 4 + 38 = 42
∴ 2 × 4 + 4 × 6 + 6 × 8+…… का 20 वाँ पद
= 40 × 42 = 1680.

प्रश्न 23.
श्रेणी 3 + 7 + 13 + 21 + 31 +….. के n पदों का योगफल ज्ञात कीजिए।
हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-14
= n2 + n – 2 +3
= n2 + n + 1
∴ दी हुई श्रेणी का योग

प्रश्न 24.
यदि S1, S2, S3, क्रमशः प्रथम n प्राकृत संख्याओं का योग, उनके वर्गों का योग तथा घनों का योग है, तो सिद्ध कीजिए कि

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-15
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-16

प्रश्न 25.
निम्नलिखित श्रेणियों के n पदों का योग ज्ञात कीजिए :

प्रश्न 26.

हल:
MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-18

प्रश्न 27.
कोई किसान एक पुराने ट्रैक्टर को 12000 रू. में खरीदता है। वह 6000 रु. नकद भुगतान करता है और शेष राशि को 500 रू की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 12% वार्षिक ब्याज भी देता है। किसान को ट्रैक्टर की कुल कितनी कीमत देनी पड़ेगी?
हल:
पुराने ट्रैक्टर का मूल्य = 12000 रू
नकद भुगतान = 6000 रू
शेष = 12000 – 6000 = 6000 रू
एक किस्त का भुगतान = 500 रू

MP Board Class 11th Maths Solutions Chapter 9 अनुक्रम तथा श्रेणी विविध प्रश्नावली img-20
कुल भुगतान = (12000 + 4680) रू
= 16680 रू।

प्रश्न 28.
शमशाद अली 22000 रू में एक स्कूटर खरीदता है। वह 4000 रू नकद देता है और शेष राशि को 1000 रू वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 10% वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी?
हल:
स्कूटर की कीमत = 22000 रू
नकद भुगतान = 4000 रू
शेष = 22000 – 4000 = 18000 रू
एक किस्त की राशि = 1000 रू

प्रश्न 29.
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा जिनसे यह भी करने को कहता है कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस श्रृंखला को जारी रखे। यह कल्पना करके कि श्रंखला न टूटे तो 8वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च 50 पैसे है।
हल:
पहला व्यक्ति चार पत्र लिखता है। पत्र प्राप्त करने वाले 4 व्यक्ति फिर चार-चार पत्र लिखते हैं। इस प्रकार श्रृंखला बढ़ती चली जाती है।
हर अवसर पर पत्रों की संख्याएँ 4, 16, 24…… 8 पदों तक
कुल पत्रों की संख्या = 4 + 16 + 64 + ……………8 पदों तक

प्रश्न 30.
एक आदमी ने एक बैंक में 10000 रूपये 5% वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, 15वें वर्ष में उसके खाते में कितनी रकम हो गई तथा 20 वर्षों बाद कल कितनी रकम हो गयी, ज्ञात कीजिए।
हल:
बैंक में जमा की गई राशि = 10000 रू
ब्याज की दर = 5% प्रति वर्ष

इस प्रकार हर वर्ष उसे 500 रू ब्याज के मिलेंगे।
1 वर्ष, 2 वर्ष, 3 वर्ष,…….बाद ब्याज की राशि
500, 1000, 1500, ….
15 वें वर्ष में ब्याज = (n – 1) × 500 = (15 – 1) x 500
= 14 × 500
= 7000 रू
मूलधन = 10000 रू
उसके खाते में 15वें वर्ष में = 10000 + 7000
= 17000 रू होंगें
20 वर्ष का ब्याज = 20 × 500
= 10000 रू
मूलधन = 10000 रू
20 वर्ष बाद बैंक में कुल जमा राशि = 10000 + 10000 = 20000 रू।

प्रश्न 31.
एक निर्माता घोषित करता है कि उस की मशीन जिसका मूल्य 15625 रूपये है, हर वर्ष 20% की दर से उसका अवमूल्यन होता है। 5 वर्ष के बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
हल:

प्रश्न 32.
किसी कार्य को कुछ दिनों में पूरा करने के लिए 150 कर्मचारी लगाए गए। दूसरे दिन 4 कर्मचारियों ने काम छोड़ दिया, तीसरे दिन चार और कर्मचारियों ने काम छोड़ दिया तथा इस प्रकार अन्य। अब कार्य पूरा करने में 8 दिन अधिक लगते हैं, तो दिनों की संख्या ज्ञात कीजिए, जिनमें कार्य पूरा किया गया।
हल:
150 कर्मचारी उस कार्य को n दिनों में समाप्त करते हैं

(n + 8)[300 – 4(n + 7)] = 300n
या (n + 8)(- 4n + 272) = 300n
या (n + 8)(n – 68) = – 75n
या n2 – 60n – 544 = – 75n
या n2 + 15n – 544 = 0
या (n + 32)(n – 17) = 0
n ≠ – 32 या n = 17
कुल समय = n + 8 दिन
= 17 + 8 = 25 दिन।

Leave a Reply

Your email address will not be published. Required fields are marked *