MP 12th Maths

MP Board Class 12th Maths Book Solutions Chapter 12 रैखिक प्रोग्रामन

MP Board Class 12th Maths Book Solutions Chapter 12 रैखिक प्रोग्रामन

MP Board Class 12th Maths Book Solutions Chapter 12 रैखिक प्रोग्रामन

Ex 12.1

ग्राफीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए।

प्रश्न 1.
निम्न अवरोधों के अन्तर्गत Z = 3x + 4y का अधिकतमीकरण कीजिए-
x + y ≤ 4, x ≥ 0, y ≥ 0
हल:
अधिकतम
Z = 3x +4y
x + y ≤ 4
x ≥ 0, y ≥ 0

पहले सभी समस्याओं को समीकरण के रूप में लिखने पर
x + y = 4
x = 0   ….(ii)
y = 0   …(iii)
अब ग्राफ बनाने पर सुसंगत क्षेत्र OAB प्राप्त होता है।
Z के मान की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 2
अतः Z का अधिकतम मान 16 बिन्दु (0, 4) पर है।

प्रश्न 2.
निम्न अवरोधों के अन्तर्गत Z = – 3x + 4y का न्यूनतमीकरण कीजिए-
x + 2y ≤ 8, 3x + 2y ≤ 12, x ≥ 0, y ≥ 0
हल:
सर्वप्रथम सभी असमीकरणों को समीकरण के रूप में लिखने पर
x + 2y =  8 ……(i)
3x + 2y = 12 ……(ii)
x = 0, y = 0 ……(iii)
अब आलेख बनाने पर सुसंगत क्षेत्र OABC प्राप्त होता है।
समी०
(i) व
(ii) को हल करने पर
x = 2, y = 3 प्राप्त होता है।
∵ रेखा
(i) व
(ii) बिन्दु (2, 3) पर मिलती हैं।


अतः बिन्दु (4,0) पर Z का मान न्यूनतम है।

प्रश्न 3:
निम्न अवरोधों के अन्तर्गत Z = 5x + 3y का अधिकतमीकरण कीजिए
3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0
हल:
सर्वप्रथम असमीकरणों को समीकरणों के रूप में लिखने पर,
3x + 5y =15 ….(i)
5x + 2y=10 …(ii)
x = 0 …(iii)
y = 0 …(iv)
अब समीकरणों का ग्राफ बनाने पर सुसंगत क्षेत्र OABC प्राप्त होता है।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 4
अब Z का मान प्रत्येक कोणीय बिन्दु पर ज्ञात करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 5

प्रश्न 4.
निम्न अवरोधों के अन्तर्गत z = 3x + 5y का न्यूनतमीकरण कीजिए-
x + 3y ≥ 3, x + y ≥ 2, x ≥ 0, y ≥ 0
हल:
सर्वप्रथम सभी असमीकरणों को समीकरणों के रूप में लिखने पर,
x + 3y =3 …(i)
x + y=2 …(ii)
x = 0 …(iii)
y = 0 …(iv)
अब ग्राफ बनाने पर सुसंगत क्षेत्र X ABCY प्राप्त होता हो।

प्रश्न 5.
निम्न अवरोधों के अन्तर्गत Z = 3x +2y का अधिकतमीकरण कीजिए-
x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0
हल:
सर्वप्रथम असमीकरणों को समीकरणों के रूप में लिखने पर
x + 2y = 10 …(i)
3x + y = 15 …(ii)
x = 0, y = 0 …(iii)
अब ग्राफ बनाने पर सुसंगत क्षेत्र OABC प्राप्त होता है।
समीकरण (i) व (ii) को हल करने पर,
x =4, y=3
ये रेखाएँ बिन्दु B(4,3) पर प्रतिच्छेदित करती हैं।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 7
सारणी से बिन्दु (4,3) पर Z का अधिकतम मान 18 है।

प्रश्न 6.
निम्न अवरोधों के अन्तर्गत Z = x+2y का न्यूनतमीकरण कीजिए-
2x+y ≥ 3, x+2y ≥ 6, x,y ≥ 0
हल:
सर्वप्रथम असमीकरणों को समीकरणों के रूप में लिखने पर
2x + y =3 ….(i)
x + 2y =6 …(ii)
x = 0, y = 0 …(iii)

ग्राफ बनाने पर सुसंगत क्षेत्र XABY प्राप्त होता है।
z का मान प्रत्येक कोणीय बिन्दु पर ज्ञात करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 9
यहाँ z का प्रत्येक मान 6 है।।
अतः बिन्दुओं (6,0) और (0,3) को मिलाने वाली रेखा खण्ड पर स्थित सभी बिन्दुओं पर Z का न्यूनतम मान 6 है।

दिखाइए कि z का न्यूनतम मान दो बिन्दुओं से अधिक बिन्दुओं पर घटित होता है।

प्रश्न 7.
निम्न अवरोधों के अन्तर्गत Z = 5x + 10y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए-
x + 2y ≤ 120; x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0
हल:
दिया है : उद्देश्य फलन : Z = 5x + 10y
अवरोध : x + 2y ≤ 120, x + y ≥ 60
x – 2y ≥ 0, x, y ≥ 0
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 10
(1) x +2y ≤ 120 का आरेख,
रेखा x + 2y =120, बिन्दु A(120, 0) और बिन्दु B(0, 60) से होकर जाती है।
∴ x + 2y =120 का आरेख रेखा AB है।
x + 2y ≤ 120 में x = 0, y = 0 रखने पर,
0 ≤ 120, जो सत्य है।
∴ x +2y ≤ 120 के क्षेत्र में बिन्दु रेखा AB पर और उसके नीचे मूल बिन्दु की ओर स्थित है।
(2) x + y ≥ 60 का आरेख
रेखा x + y = 60, बिन्दु P(60, 0), B(0, 60) से होकर जाती है।
∴ x + y = 60 का आरेख रेखा PB है।
x + y ≥ 60 में x = 0, y = 0 रखने पर, 0 ≥ 60 जो सत्य नहीं है।
⇒ x +y ≥ 60 क्षेत्र के बिन्दु रेखा PB पर और उसके ऊपर होते हैं।
(3) x – 2y ≥ 0 का आरेख
रेखा x – 2y = 0 मूल बिन्दु 0 और Q(120, 60) से होकर जाती है।
∴ x – 2y ≥ 0 का आरेख रेखा OQ है।
x – 2y ≥ 0 में x =1, y = 0 रखने पर 1 ≥ 0 जो सत्य है।
⇒ (1, 0) इस क्षेत्र में स्थित है। x – 2y ≤ 0 क्षेत्र के बिन्दु रेखा OQ पर और इसके नीचे (1, 0) की ओर हैं।
(4) x ≥ 0 क्षेत्र के बिन्दु y- अक्ष पर और y- अक्ष के दायीं ओर है।
(5) y ≥ 0 क्षेत्र के बिन्दु x- अक्ष पर और इसके ऊपर हैं।
इस समस्या का सुसंगत क्षेत्र PSRA है।
जबकि बिन्दु S(40, 20) PB: x + y = 60 और OQ: x – 2y = 0 का प्रतिच्छेद बिन्दु है।
और R(60, 30), AB: x + 2y =120 और x – 2y = 0 का प्रतिच्छेद बिन्दु है।
उद्देश्य फलन : Z = 5x + 10y
बिन्दु A(120, 0) पर,
Z = 5 x 120 + 10 x 0 = 600
बिन्दु R(60, 30) पर,
Z = 5 x 60 + 10 x 30
= 300 + 300 = 600
बिन्दु S(40, 20) पर,
Z = 5 x 40 + 10x 20
= 200 + 200 = 400
बिन्दु P(60, 0) पर,
Z = 5 x 60 + 10 x 0
= 300 + 0 = 300
⇒ Z का न्यूनतम मान P(60, 0) पर 300 है।
और Z का अधिकतम मान RA के सभी बिन्दुओं पर 600 है।

प्रश्न 8.
निम्न अवरोधों के अन्तर्गत Z = x + 2y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए-
x + 2y ≥ 100, 2x – y ≤ 0, 2x +y ≤ 200, x, y ≥ 0
हल:
सर्वप्रथम असमीकरणों को समीकरणों के रूप में लिखने पर
x + 2y = 100
2x – y = 0
2x + y = 200
x = 0 y=0
ग्राफ बनाने पर सुसंगत क्षेत्र BEDC प्राप्त होता है।
समी० 2x + y = 200 तथा 2x – y = 0 को हल करने पर x = 50, y = 100 प्राप्त होता है।
⇒ D(50,100)
पुनः समी० x + 2y = 100 तथा 2x – y = 0 को हल करने पर, x = 20, y = 40 प्राप्त होता है।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 11
अतः Z का न्यूनतम मान 100 है तथा अधिकतम मान बिन्दु (0, 200) पर 400 है।

प्रश्न 9.
निम्न अवरोधों के अन्तर्गत Z = – x + 2y का अधिकतमीकरण कीजिए-
x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0
हल:
दिया है : उद्देश्य फलन :
Z = – x + 2y
(1) x + y ≥ 5 का आरेख
रेखा x + y =5, बिन्दु A(5, 0) और B(0, 5) से होकर जाती है।
∴ x + y =5 का आरेख रेखा AB है।
x + y ≥ 5 में x =0, y=0 रखने पर,
0 ≥ 5 जो सत्य नहीं है।
∴ x + y ≥ 5 क्षेत्र के बिन्दु रेखा AB पर और उसके ऊपर है।

(2) x + 2y ≥ 6 का आरेख
रेखा x + 2y = 6, बिन्दु C (6, 0) और D (0, 3) से होकर जाती है।
∴ x + 2y = 6 रेखा का आरेख रेखा CD है।
⇒ x + 2y ≥ 6 में x =0, y = 0 रखने पर, 0 ≤ 6 जो सत्य नहीं है।
∴ x + 2y ≥ 6 का क्षेत्र के बिन्दु CD पर या उसके ऊपर है।
(3) x ≥ 3 क्षेत्र के बिन्दु रेखा PQ: x =3 पर या उसके दायीं ओर है।
(4) y ≥ 0 क्षेत्र के बिन्दु x- अक्ष पर और उसके ऊपर होते हैं। समस्या का सुसंगत क्षेत्र PQRCX है।
बिन्दु रेखा PQ =3 और AB: x + y =5 का प्रतिच्छेदन बिन्दु Q के निर्देशांक (3, 2) है।
बिन्दु R रेखा CD: x + 2y = 6 और AB: x + y =5 का प्रतिच्छेदन बिन्दु (4, 1) है।
उद्देश्य फलन : Z = – x + 2y
अब, बिन्दु Q (3, 2) पर,
Z = – 3 + 2 x 2 = – 3 + 4 =1
बिन्दु R(4, 1) पर,
Z = – 4 + 2 x 1 = – 4 + 2 = – 2
बिन्दु C(6, 0) पर,
Z = – 6 + 0 = – 6
⇒ z का अधिकतम मान 1 है परन्तु सुसंगत क्षेत्र अपरिबद्ध है तो – x + 2y > 1 क्षेत्र पर विचार करें। .
– x + 2y > 1 तथा सुसंगत क्षेत्र में अनेकों बिन्दु उभयनिष्ठ है।
अतः Zका कोई अधिकतम मान नहीं है।

प्रश्न 10.
निम्न अवरोधों के अन्तर्गत Z = x + y का अधिकतमीकरण कीजिए-
x – y ≤ – 1, – x + y ≤ 0, x, y ≥ 0
हल:
(i) x – y ≤ -1 का क्षेत्र
रेखा x – y = – 1 बिन्दु A(-1,0), B(0, 1) से होकर जाती है, जो AB आरेख है।
x – y ≤ – 1 में x =0, y = 0 रखने पर,
0 ≤ -1 जो सत्य नहीं है।
⇒ x – y ≤ – 1 के क्षेत्र बिन्दु रेखा AB पर और उसके ऊपर है।
(ii) – x + y ≤ का क्षेत्र
रेखा – x + y = 0, मूल बिन्दु O और C(1, 1) से होकर जाती है।
– x + y ≤ 0 में x = 1, y = 0 रखने पर, -1 ≤ 0 जो सत्य है।
⇒ – x + y ≤ 0 के क्षेत्र बिन्दु OC पर या उसके नीचे (1,0) ओर हैं।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.1 img 13
(iii) x ≥ 0 क्षेत्र के बिन्दु y- अक्ष पर और -अक्ष के दायीं ओर हैं।
(iv) y ≥ 0 क्षेत्र के बिन्दु x- अक्ष पर और x- अक्ष के ऊपर स्थित हैं।
इस समस्या का कोई सुसंगत क्षेत्र नहीं है।
अतः Z का अधिकतम मान नहीं है।

Ex 12.2

प्रश्न 1.
रेशमा दो प्रकार के भोज्य P और Q को इस प्रकार मिलाना चाहती है कि मिश्रण में विटामिन अवयवों में 8 मात्रक विटामिन A तथा 11 मात्रक विटामिन B हों। भोज्य P की लागत Rs 60/kg और भोज्य ए की लागत Rs 80/kg है। भोज्य P में 3 मात्रक/kg विटामिन A और 5 मात्रक/kg विटामिन B है जबकि भोज्य में 4 मात्रक/kg विटामिन A और 2 मात्रक/kg विटामिन है। मिश्रण की न्यूनतम लागत ज्ञात कीजिए।
हल:
माना मिश्रण में भोज्य पदार्थ P की मात्रा x kg और Q की मात्रा y kg है।
स्पष्टतः x ≥ 0, y ≥ 0
प्रदत्त आंकड़ों से निम्नलिखित सारणी बनाते हैं।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 1
∴ मिश्रण में विटामिन A के 8 मात्रक और विटामिन B के 11 मात्रक होने चाहिए अतः निम्न अवरोध प्राप्त होते हैं।
3x + 4 ≤ 8
5x + 2y ≥ 11
भोज्य P के x kg और Q के y kg खरीदने का कुल मूल्य z है तब
Z = 60x + 80y
अतः समस्या का गणितीय समीकरण निम्नलिखित है।
निम्न व्यवरोधों के अन्तर्गत
3x + 4y ≥ 8 …(i)
5x + 2y ≥ 11 …(ii)
x, y ≥ 0 …(iii)

असमीकरणों
(i) व
(iii) तक के आलेखों द्वारा निर्धारित सुसंगत क्षेत्र X APDY हैं तथा सुसंगत क्षेत्र अपरिवद्ध है।

AB: 3x + 4y = 8
और 5x + 2y = 11
Z के मान की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 3
स्पष्ट है कि 2 का न्यूनतम मान 160 है। परन्तु सुसंगत क्षेत्र अपरिवद्ध है।
अब हमें असमीकरण का आलेख खींचना पड़ेगा।
60x + 80y < 160
या 3x + 4y < 8
यह रेखा के बीच का क्षेत्र प्रदर्शित करता है।
AB: 3x + 4y = 8
आलेख से ज्ञात होता है कि यह क्षेत्र तथा सुसंगत क्षेत्रों के बीच कोई बिन्दु उभयनिष्ठ नहीं है।
अतः z का न्यूनतम मूल्य 160 रु० है, जो कि को मिलाने वाली रेखाखण्ड के सभी बिन्दुओं पर न्यूनतम है।

प्रश्न 2:
एक प्रकार के केक को 200 g आटा तथा 25g वसा (fat) की आवश्यकता होती है तथा दूसरी प्रकार के केक के लिए 100 g आटा तथा 50g वसा की आवश्यकता होती है। केकों की अधिकतम संख्या बताओ जो 5 किलो आटे तथा 1 किलो वसा से बन सकते हैं, यह मान लिया गया है कि केकों को बनाने के लिए अन्य पदार्थों की कमी नहीं रहेगी।
हल:
माना पहली प्रकार के केक x तथा दूसरी प्रकार के केक y हैं।
∴ कुल केकों की संख्या z =x+y
St 200x + 100y ≤ 5000 (आटा)
25x + 50y ≤ 1000 (वसा)
अतः समस्या का गणितीय सूत्रीकरण निम्न हैं-
उच्च अवरोधों के अन्तर्गत
z = x + y
या 2x + y ≤ 50
x + 2y ≤ 40 और x,y ≥ 0
असमीकरणों का आलेख बनाने पर सुसंगत क्षेत्र OAEB प्राप्त होता है।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 4
रेखाओं AB: 2x + y = 50 और CD: x +2y = 40 के प्रतिच्छेद बिन्दु E (20,10) हैं।
अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 5
अतः केकों की अधिकतम संस्था = 30 एक प्रकार की तथा 10 अन्य प्रकार की हैं।

प्रश्न 3.
एक कारखाने में टेनिस के रैकेट तथा क्रिकेट के बल्ले बनते हैं। एक टेनिस रैकेट बनाने के लिए 1.5 घंटा यांत्रिक समय तथा 3 घंटे शिल्पकार का समय लगता है। एक क्रिकेट बल्ले को तैयार करने में 3 घंटे यांत्रिक समय तथा 1 घंटा शिल्पकार का समय लगता है। एक दिन में कारखाने में विभिन्न यंत्रों पर उपलब्ध यांत्रिक समय के 42 घंटे और शिल्पकार समय के 24 घंटे से अधिक नहीं हैं।
(i) रैकेटों और बल्लों को कितनी संख्या में बनाया जाए ताकि कारखाना पूरी क्षमता से कार्य करे?
(ii) यदि रैकेट और बल्ले पर लाभ क्रमश: Rs 20 तथा Rs 10 हों तो कारखाने का अधिकतम लाभ ज्ञात कीजिए यदि कारखाना पूरी क्षमता से कार्य करे।
हल:
माना रैकेटों की संख्या = x तथा बल्लों की संख्या = y
(i) अधिकतम
z = x + y
St 15x + 3y ≤ 42
3x + y ≤ 24
x, y ≥ 0
असमीकरणों का आलेख बनाने पर सुसंगत क्षेत्र OABC है तथा रेखाओं x +2y = 28 तथा 3x +y = 24 का प्रतिच्छेद बिन्दु B(4,12) है।

अब र की प्रत्येक कोणीय बिन्दु पर गणना करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 7
∵ 2 का अधिकतम मात्रा 16 है,
∵ 4 रैकेट तथा 12 बल्ले।
(ii) लाभ z = 20x + 10y
At D(0, 0), z = 0
At A(8, 0), z = 160
At B(4, 12), z = 200
At C(0, 14), z = 14
∴ अधिकतम लाभ 200 रु० हैं।

प्रश्न 4.
एक निर्माणकर्ता नट और बोल्ट का निर्माण करता है। एक पैकेट नटों के निर्माण में मशीन A पर एक घंटा और मशीन B पर 3 घंटे काम करना पड़ता है, जबकि एक पैकेट बोल्ट के निर्माण में 3 घंटे मशीन A पर और 1 घंटा मशीन B पर काम करना पड़ता है। वह नटों से Rs 17.50 प्रति पैकेट और बोल्टों पर Rs 7.00 प्रति पैकेट लाभ कमाता है। यदि प्रतिदिन मशीनों का अधिकतम उपयोग 12 घंटे किया जाए तो प्रत्येक (नट और बोल्ट) के कितने पैकेट उत्पादित किए जाएँ ताकि अधिकतम लाभ कमाया जा सके।
हल:
माना बोल्ट के पैकिट = x तथा y पैकेट नटों का निर्माण हुआ
तब दिये गये अवरोध का गणितीय सूत्रीकरण निम्नलिखित है-
अधिकतम z = 17.50x + 7y
या x + 3y ≤ 12
3x + y ≤ 12
x, y ≥ 0
अब असमीकरणों का आलेख बनाने पर सुसंगत क्षेत्र OABC प्राप्त होता है
रेखाओं x + 3y = 12 और 3x + y = 12 का प्रतिच्छेद बिन्दु B(3,3) हैं।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 8
अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 9
अतः नट के तीन पैकेट तथा बोल्ट के तीन पैकेट और अधिकतम लाभः = 73.50 रु० हैं।

प्रश्न 5.
एक कारखाने में दो प्रकार के पेंच A और B बनते हैं। प्रत्येक के निर्माण में दो मशीनों के प्रयोग की आवश्यकता होती है, जिसमें एक स्वचालित और दूसरी हस्तचालित है। एक पैकेट पेंच A के निर्माण में 4 मिनट स्वचालित और 6 मिनट हस्तचालित मशीन, तथा एक पैकेट पेंच B के निर्माण में 6 मिनट स्वचालित और 3 मिनट हस्तचालित मशीन का कार्य होता है। प्रत्येक मशीन किसी भी दिन के लिए अधिकतम 4घंटे काम के लिए उपलब्ध है। निर्माता पेंच के प्रत्येक पैकेट पर Rs7 और पेंच B के प्रत्येक पैकेट पर Rs 10 का लाभ कमाता है। यह मानते हुए कि कारखाने में निर्मित सभी पेंचों के पैकेट बिक जाते हैं, ज्ञात कीजिए कि प्रतिदिन कितने पैकेट विभिन्न पेंचों के बनाए जाएँ जिससे लाभ अधिकतम हो तथा
अधिकतम लाभ ज्ञात कीजिए।
हल:
माना x पैकेट पेंच A के तथा y पैकेट पेंच B के उत्पादित होने चाहिए।
इसलिए गणितीय सूत्रीकरण निम्नलिखित होगा-
अधिकतम : z = 7x + 10y (लाभ)
St 4x + 6y ≤ 240 (स्वचालित मशीन)
2x + 3y ≤ 120
6x + 3y ≤ 240 (हस्तचालित मशीन)
x, y ≥ 0
2x + y ≤ 80

अब असमीकरणों का आलेख बनाने पर सुसंगत क्षेत्र OABC प्राप्त होता है।
रेखाओं 2x + 3y = 120 और 2x + y = 80 का प्रतिच्छेद बिन्दु B (30, 20) है।
अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 11
इसलिए 30 पैकिट A प्रकार के पेंच तथा 20 पैकेट B प्रकार के पेंचों के तथा अधिकतम लाभ = 410 रु० है।

प्रश्न 6.
एक कुटीर उद्योग निर्माता पैडेस्टल लैंप और लकड़ी के शेड बनाता है। प्रत्येक के निर्माण में एक रगड़ने/काटने और एक स्प्रेयर की आवश्यकता पड़ती है। एक लैंप के निर्माण में 2 घंटे रगड़ने/काटने और 3 घंटे स्प्रेयर की आवश्यकता होती है, जबकि एक शेड के निर्माण में 1 घंटा रगड़ने/काटने और 2 घंटे स्प्रेयर की आवश्यकता होती है। स्प्रेयर की मशीन प्रतिदिन अधिकतम 20 घंटे और रंगड़ने/काटने की मशीन प्रतिदिन अधिकतम 12 घंटे के लिए उपलब्ध है। एक लैंप की बिक्री पर Rs 5 और एक शेड की बिक्री पर Rs 3 का लाभ होता है। यह मानते हुए कि सभी निर्मित लैंप और शेड बिक जाते हैं, तो बताइए वह निर्माण की प्रतिदिन कैसी योजना बनाए कि लाभ अधिकतम हो?
हल:
माना x लैंप तथा y लकड़ी के शेड उत्पादित होते हैं। इस समस्या को गणितीय सूत्रीकरण करने पर अधिकतम
लाभ
z = 5x + 3y
St 2x + y ≤ 12 (रगड़ना/काटना)
3x + 2y ≤ 20 (स्प्रेयर)
x, y ≥ 20
अब आलेख बनाने पर सुसंगत क्षेत्र OAPD प्राप्त होता है।
रेखाओं 2x + y = 12 तथा 3x + 2y = 20 का प्रतिच्छेद बिन्दु P(4,4) है।

अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर कोणीय बिन्दु
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 13
इसलिए 4 लैंप तथा 4 लकड़ी के शेड तथा अधिकतम लाभ = 32 रु० है।

प्रश्न 7.
एक कंपनी प्लाईवुड के अनूठे स्मृति चिह्न का निर्माण करती है। A प्रकार के प्रति स्मृति चिह्न के निर्माण में 5 मिनट काटने और 10 मिनट जोड़ने में लगते हैं। B प्रकार के प्रति स्मृति चिह्न के लिए 8 मिनट काटने और 8 मिनट जोड़ने में लगते हैं। दिया गया है कि काटने के लिए कुल समय 3 घंटे 20 मिनट तथा जोड़ने के लिए 4 घंटे उपलब्ध हैं। प्रत्येक A प्रकार के स्मृति चिह्न पर Rs 5 और प्रत्येक B प्रकार के स्मृति चिह्न पर Rs 6 का लाभ होना है। ज्ञात कीजिए कि लाभ के अधिकतमीकरण के लिए प्रत्येक प्रकार के कितने-कितने स्मृति चिह्नों का कंपनी द्वारा निर्माण होना चाहिए?
हल:
माना A प्रकार के स्मृति चिह्नों की संख्या x तथा B प्रकार के स्मृति चिह्नों की संख्या y हैं।
दी गई समस्या का गणितीय समीकरण करने पर
अधिकतम = 5x + 6y (लाभ)
St 5x + 8y ≤ 200 (कटिंग)
10x + 8y ≤ 240 (जोड़ना)
x, y ≥ 0
अब आलेख बनाने पर सुसंगत क्षेत्र OABC प्राप्त होते हैं।

अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 14
क्योंकि B(8, 20) पर 2 का मान अधिकतम है अत: A प्रकार के स्मृति चिह्नों की संख्या 8 तथा B प्रकार के स्मृति चिह्नों की संख्या 20 है तथा अधिकतम लाभ 160 रु० है।

प्रश्न 8.
एक सौदागर दो प्रकार के निजी कंप्यूटर-एक डेस्कटॉप नमूना और दूसरा पोर्टेबल नमूना, जिनकी कीमतें क्रमश: Rs 25,000 और Rs 40,000 होगी, बेचने की योजना बनाता है। वह अनुमान लगाता है कि कंप्यूटरों की कुल मासिक माँग 250 नगों से अधिक नहीं होगी। प्रत्येक प्रकार के कंप्यूटरों के नगों की संख्या ज्ञात कीजिए जिसे सौदागर अधिकतम लाभ प्राप्त करने के लिए संग्रह करें यदि उसके पास निवेश के लिए Rs 70 लाख से अधिक नहीं है और यदिडेस्कटॉप नमूने पर उसका लाभ Rs 4500 और पोर्टेबल नमूने पर Rs 5000 लाभ हो।
हल:
माना डेस्कटॉप की संख्या x तथा पोर्टेबल की संख्या y है। तब समस्या का गणितीय समीकरण करने पर
अधिकतम z = 4500x + 5000y (लाभ)
25000x + 40000y ≤ 70,00,000 (लागत मूल्य)
5x + 8y ≤ 1400
x + y ≤ 250 (माँग)
x, y ≥ 0
अब समस्या का आलेख बनाने पर सुसंगत क्षेत्र OABC प्राप्त होता है जहाँ कोणीय बिन्दुओं 0,A, B, C के निर्देशांक
क्रमशः (0,0), (250,0), (200,50) और (0,175) हैं।

अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 16
अत: डेस्कटोंपों के नमूनों की संख्या 200 तथा पोर्टेबल नमूनों की संख्या 50 है तथा अधिकतम लाभ = 1150,000 रु० हैं।

प्रश्न 9.
एक भोज्य पदार्थ में कम से कम 80 मात्रक विटामिन A और 100 मात्रक खनिज होना चाहिए। दो प्रकार के भोज्य F1 और F2 उपलब्ध हैं। भोज्य F1 की लागत Rs 4 प्रति मात्रक और F2 की लागत Rs 5 प्रति मात्रक है। भोज्य F1 की एक इकाई में कम से कम 3 मात्रक विटामिन A और 4 मात्रक खनिज है। F2की प्रति इकाई में कम से कम 6 मात्रक विटामिन A और 3 मात्रक खनिज हैं। इसको एक रैखिक प्रोग्रामन समस्या के रूप में सूत्रबद्ध कीजिए। उस आहार का न्यूनतम मूल्य ज्ञात कीजिए, जिसमें इन दो भोज्यों का मिश्रण है और उसमें न्यूनतम पोषक तत्त्व हैं।
हल:
माना x मात्रक भोज्य पदार्थ F1 के तथा y मात्रक भोज्य पदार्थ F2 के हैं। तब गणितीय सूत्रीकरण करने पर
न्यूनतम z = 4x + 6y
St 3x + 6y ≥ 80 (लागत)
4x + 3y ≥ 100 (विटामिन A)
x, y ≥ 0 (विटामिन B)
अब आलेख बनाने पर सुसंगत क्षेत्र X AEDY प्राप्त होता है जो कि अपरिवद्ध है।

कोणीय बिन्दु A, E तथा D के निर्देशांक क्रमशः

अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 18
सारणी से स्पष्ट है कि – का न्यूनतम मान 104 है अतः न्यूनतम मूल्य = 104 रु०।

प्रश्न 10.
दो प्रकार के उर्वरक F1 और F2 हैं। F1 में 10% नाइट्रोजन और 6% फास्फोरिक अम्ल है। तथा F2 में 5% नाइट्रोजन तथा 10% फास्फोरिक अम्ल है। मिट्टी की स्थितियों का परीक्षण करने के पश्चात् एक किसान पाता है कि उसे अपनी फसल के लिए 14 kg नाइट्रोजन और 14 kg फास्फोरिक अम्ल की आवश्यकता है। यदि F1 की कीमत Rs. 6/kg और F2 की कीमत Rs. 5/kg है, प्रत्येक प्रकार का कितना उर्वरक उपयोग के लिए चाहिए ताकि न्यूनतम मूल्य पर वांछित पोषक तत्व मिल सके। न्यूनतम लागत क्या है?
हल:
माना मिश्रण में x kg F1 के तथा y kg F2 के मिश्रित है।
तब न्यूनतम z = 6x + 5y (लागत)
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 19
x, y ≥ 0 या न्यूनतम z = 6x +5y
St 2x + y ≥ 280
3x + 5y ≥ 2700
x, y ≥ 0
अब असमीकरणों का आलेख बनाने पर सुसंगत क्षेत्र Y ABCX प्राप्त है जो अपरिबद्ध है।

अब z की गणना प्रत्येक कोणीय बिन्दु पर करने पर कोणीय बिन्दु
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता Ex 12.2 img 21
इसलिए सारणी से z का निम्नतम मान 1000 है तथा बिन्दु B(100, 80) पर है, परन्तु सुसंगत क्षेत्र अपरिबद्ध है इसलिए असमीकरण 6x + 5y < 1000 लेने पर।
क्योंकि यहाँ पर कोई बिन्दु उभयनिष्ठ नहीं है। अतः उर्वरक F1 के 100 kg तथा उर्वरक F2 के 80 kg मात्रा है, और न्यूनतम मूल्य 1000 रु० है।

प्रश्न 11.
निम्नलिखित असमीकरण निकाय : 2x + y ≤ 10, x+3y ≤ 15, x, y ≥ 0 से निर्धारित सुसंगत क्षेत्र के कोणीय बिन्दु (0,0), (5,0), (3,4) और (0, 5) हैं। माना कि Z = px + qy, जहाँ p, q>0, p तथा q के लिए निम्नलिखित में कौन प्रतिबन्ध उचित है ताकि Z का अधिकतम (3, 4) और (0, 5) दोनों पर घटित होता है।
(A) p = q
(B) p = 2q
(C) p = 3q
(D) q = 3p
हल:
दिया है : Z = px + qy
बिन्दु (3, 4) पर, Z = 3p + 4q
बिन्दु (0, 5) पर, Z = 0 + 5q = 5q
∴ 3p + 4q=5q
⇒ 3p = 5q – 4q
⇒ 3p = q
अतः विकल्प (D) सही है।

विविध प्रश्नावली

प्रश्न 1.
उदाहरण 9 पर ध्यान कीजिए।आहार में विटामिन A की मात्रा का अधिकतमीकरण करने के लिए प्रत्येक भोज्य के कितने पैकेटों का उपयोग होना चाहिए? आहार में विटामिन A की अधिकतम मात्रा क्या है?
हल:
माना x पैकेट भोज्य A के और y पैकेट भोज्य B के खरीदे गए।
दिया है:
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 1
उद्देश्य फलन : Z = 6x + 3y
अवरोध : 12x + 3y ≥ 240, 4x + 20y ≥ 460, 6x + 4y ≤ 300, x, y ≥ 0
या 4x + y ≥ 80, x + 5y ≥ 115, 3x + 2y ≤ 150, x, y ≥ 0
(1) 4x + y ≥ 80 का आलेखन
रेखा 4x + y = 80, बिन्दु A(20,0), B(0, 80) से होकर जाती है।
4x + y ≥ 80 में x = 0, y = 0 रखने पर, 0 ≥ 80 जो सत्य नहीं है।
⇒ 4x + y ≥ 80 रेखा AB पर तथा उसके ऊपर का क्षेत्र है।
(2) रेखा x + 5y = 115, बिन्दु C(115, 0), D (0, 23) से गुजरती है।
∴ x + 5y ≥ 115 में x = 0, y = 0 रखने पर, 0 ≥ 115 जो सत्य नहीं है।
⇒ x + 5y ≥ 115 के क्षेत्र के बिन्दु रेखा CD पर है या उसके ऊपर हैं।
(3) रेखा 3x + 2y = 150, बिन्दु E (50, 0), F (0,75) से होकर जाती है।
∴ 3x + 2y ≤ 150 में x = 0, y = 0 रखने पर, 0 ≤ 150 जो सत्य है।
⇒ 3x + 2y ≤ 150 के क्षेत्र के बिन्दु रेखा EF है या उसके नीचे है।

(4) x ≥ 0 के क्षेत्र के बिन्दु y- अक्ष पर और उसके दायीं ओर हैं।
(5) y ≥ 0 के क्षेत्र के बिन्दु x- अक्ष पर है और उसके ऊपर हैं।
(6) रेखा AB: 4x + y = 80 तथा CD: x + 5y = 115 के प्रतिच्छेद बिन्दु Q(15, 20) हैं।
(7) रेखा CD: x + 5y = 115 तथा EF = 3x + 2y = 150 के प्रतिच्छेद बिन्दु R(40, 15) हैं।
(8) रेखा AB : 4x + y = 80 तथा EF : 3x + 2y = 150 के प्रतिच्छेद बिन्दु P(2, 72) है।
समस्या का सुसंगत क्षेत्र PQR है।
अब, उद्देश्य फलन : Z = 6x + 3y
बिन्दु P (2, 72) पर,
Z = 12 + 3 x 72 =12 + 216 = 228
बिन्दु Q (15, 20) पर,
Z = 6 x 15 + 3 x 20 = 90 + 60 = 150
बिन्दु R(40, 15) पर,
Z = 6 x 40 +3 x 15 = 240 + 45 = 285
इस प्रकार विटामिन की अधिकतम मात्रा 285 मात्रक है जब भोज्य P के 40 पैकेट और भोज्य के 15 पैकेट खरीदे जाते हैं।

प्रश्न 2.
एक किसान दो प्रकार के चारे P और Q को मिलाता (मिश्रण) है। P प्रकार के चारे, जिसका मूल्य Rs. 250 प्रति थैला जो कि पोषक तत्व A के 3 मात्रक, तत्व B के 2.5 मात्रक और तत्व C के 2 मात्रक रखता है जबकि ए प्रकार का चारा जिसका मूल्य Rs. 200 प्रति थैला है, पोषक तत्व A का 1.5 मात्रक, तत्व B का 11.25 मात्रक और तत्व के तीन मात्रक रखता है। पोषक तत्वों A, B और C की न्यूनतम आवश्यकताएँ क्रमशः 18 मात्रक, 45 मात्रक और 24 मात्रक हैं। प्रत्येक प्रकार के थैलों की संख्या ज्ञात कीजिए ताकि मिश्रण के प्रत्येक थैले का मूल्य न्यूनतम हो। मिश्रण के प्रत्येक थैले का न्यूनतम मूल्य क्या है?
हल:
माना x थैले P प्रकार के चारे के और y थैले Q प्रकार के चारे के मिलाये जाते हैं।
दिया है :
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 3
उद्देश्य फलन : Z = 250x + 200y
अवरोध : 3x + 1.5y ≥ 18, 2.5x + 11.25y ≥ 45, 2x + 3y ≥ 24 और x, y ≥ 0
या 2x + y ≥ 12, 2x + 9y ≥ 36, 2x + 3y ≥ 24 तथा x, y ≥ 0
(1) 2x + y ≥ 12 का आरेख
रेखा 2x + y =12 बिन्दु A(6,0), B(0, 12) से गुजरती है।
∴ 2x + y ≥ 12 में x = 0, y = 0 रखने पर,
0 ≥ 12 जो सत्य नहीं है।
⇒ 2x + y ≥ 12 का क्षेत्र AB या उसके ऊपर है।
(2) 2x + 9y ≥ 36 का आरेख
रेखा 2x + 9y = 36 में, बिन्दु C(18, 0) तथा D (0, 4) से गुजरती है।
∴ 2x + 9y ≥ 36 में x = 0, y= 0 रखने पर,
0 ≥ 36 जो सत्य नहीं है।
⇒ 2x + 9y = 36 के क्षेत्र के बिन्दु रेखा CD पर हैं या उसके ऊपर हैं।
(3) 2x + 3y ≥ 24 का आरेख
रेखा 2x + 3y = 24, बिन्दु E(12, 0) तथा F(0, 8) से गुजरती है।
∴ 2x+3y ≥ 24 में x – 0, y = 0 रखने पर, 0 ≥ 24 जो सत्य नहीं है।
⇒ 2x + 3y ≥ 24 के क्षेत्र के बिन्दु रेखा EF पर हैं या उसके ऊपर हैं।
(4) x ≥ 0 के क्षेत्र बिन्दु y- अक्ष पर और उसके दायीं ओर हैं।
(5) y ≥ 0 के क्षेत्र बिन्दु x- अक्ष पर हैं और उसके ऊपर हैं।
(6) रेखा AB : 2x + y =12 और EF: 2x + 3y = 24 के प्रतिच्छेद बिन्दु P(3, 6) हैं।

(7) रेखा CD : 2x + 9y = 36 और EF : 2x + 3y = 24 के प्रतिच्छेद बिन्दु R(9, 2) हैं।
समस्या का सुसंगत क्षेत्र BPRC है।
अब, उद्देश्य फलन :
Z = 250x + 200y
बिन्दु B(0, 12) पर,
Z = 0 + 200 x 12 = 2400
बिन्दु P(3, 6) पर,
Z = 250 x 3 + 200 x 6
= 750 + 1200 = 1950
बिन्दु R(9, 2) पर,
Z = 250 x 9 + 200×2
= 2250 + 400 = 2650
बिन्दु C(18, 0) पर,
Z = 250 x 18 + 0 = 4500
∴ Z की न्यूनतम मान 1950 है। सुसंगत क्षेत्र अपरिबद्ध है।
असमिका 250x + 200y < 1950 या 5x + 4y < 39, यह रेखा  से गुजरती है और बिन्दु (3, 6) पर स्थित है।
इस प्रकार x = 0, y = 0 रखने पर, 0 < 39 जो सत्य है।
5x + 4y < 39 के क्षेत्र बिन्दु रेखा 5x + 4y = 39 के नीचे है जिसका कोई भी बिन्दु सुसंगत क्षेत्र के साथ उभयनिष्ठ नहीं है।
∴ Z का न्यूनतम मान 1950 तथा P प्रकार के 3 और 0 प्रकार के 6 थैले मिलाये जाते हैं।

प्रश्न 3.
एक आहारविद्दो प्रकार के भोज्यों x और Y को इस प्रकार मिलाना चाहता है कि मिश्रण में विटामिन A की कम-से-कम 10 मात्रक, विटामिन B की कम-से-कम 12 मात्रक और विटामिन C की 8 मात्रक हों। 1 kg भोज्यों में विटामिनों की मात्रा निम्नलिखित सारणी में दी गई है।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 5
भोज्य x के 1 kg का मूल्य Rs. 16 और भोज्य के 1kg का मूल्य Rs.20 है। वांछित आहार के लिए मिश्रण का न्यूनतम मूल्य ज्ञात कीजिए।
हल:
माना x kg भोज्य X और y kg भोज्य Y का मिश्रण बनाया जाता है।
भोज्य X का मूल्य = 160 रु० प्रति kg
और भोज्य Y का मूल्य = 20 रु० प्रति kg
अतः मिश्रण का मूल्य = (16x + 20y) रु०
अब, उद्देश्य फलन : Z = 16x + 20y
और अवरोध : x + 2y ≥ 10, 2x + 2y ≥ 12 या x + y ≥ 6 3x + y ≥ 8 और x, y ≥ 0

(1) x + 2y ≥ 10 का आरेख
रेखा x + 2y = 10, बिन्दु A(10, 0) और B(0, 5) से गुजरती है।
∴ x + 2y ≥ 10 में x = 0, y = 0 रखने पर, 0 ≥ 10, जो सत्य नहीं है।
⇒ x + 2y ≥ 10 रेखा AB पर है या उसके ऊपर है।
(2) x +y ≥ 6 का आरेख:
रेखा x + y = 6, बिन्दु C (6, 0) तथा D (0, 6) से गुजरती है।
∴ x +y ≥ 6 में, x = 0, y = 0 रखने पर, 0 ≥ 6, जो सत्य नहीं है।
⇒ x+y ≥ 6 के क्षेत्र बिन्दु रेखा CD पर है या उसके ऊपर है।
(3) 3x + y ≥ 8 का आरेख:
रेखा 3x + y = 8, बिन्दु E तथा F(0, 8) से गुजरती है।
∴ 3x + y ≥ 8 में x = 0, y = 0 रखने पर, 0 ≥ 8 जो सत्य नहीं है।
⇒ 3x + y ≥ 8 के क्षेत्र बिन्दु रेखा EF पर हैं या उसके ऊपर है।
(4) x ≥ 0 के क्षेत्र बिन्दु y- अक्ष पर और उसके दायीं ओर हैं।
(5)y ≥ 0 के क्षेत्र बिन्दु x- अक्ष पर हैं और उसके ऊपर हैं।
(6) रेखा CD: x + y = 6 और EF: 3x + y = 8 के प्रतिच्छेद बिन्दु P(1, 5) हैं।
(7) रेखा AB: x + 2y = 10 और CD: x + y = 6 के प्रतिच्छेद बिन्दु Q(2, 4) हैं।
समस्या का सुसंगत क्षेत्र FPOA है।
अब, उद्देश्य फलन: Z = 16x + 20y
बिन्दु F(0, 8) पर,
Z = 0 + 20 x 8 = 160
बिन्दु P(1,5) पर,
Z = 16 x 1 + 20 x 5 = 16 + 100 = 116
बिन्दु Q(2, 4) पर,
Z = 16 x 2 + 20 x 4 = 32 + 80 = 112
बिन्दु A(10, 0) पर,
Z = 16 x 10 + 0 = 160
Z का न्यूनतम मान 112 रु० है। परन्तु सुसंगत क्षेत्र अपरिबद्ध है।
∴ 16x + 20y < 112 पर विचार करते हैं।
इसका कोई भी बिन्दु सुसंगत क्षेत्र के साथ उभयनिष्ठ नहीं है।
इसलिए Z का न्यूनतम मान Rs. 112 है जिसके लिए भोज्य X का 2 kg और भोज्य Y का 4kg मिश्रण बनाना चाहिए।

प्रश्न 4.
एक निर्माता दो प्रकार के खिलौने A और B बनाता है। इस उद्देश्य के लिए निर्माण में तीन मशीनों की आवश्यकता पड़ती है और प्रत्येक प्रकार के खिलौने के निर्माण के लिए लगा समय (मिनटों में ) निम्नलिखित है-
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 7
प्रत्येक मशीन अधिकतम 6 घण्टे प्रतिदिन के लिए उपलब्ध है। यदि A प्रकार के खिलौने की बिक्री पर Rs. 7.50 लाभ और B प्रकार के खिलौने पर Rs. 5 का लाभ हो तो दर्शाइए कि अधिकतम लाभ कमाने के लिए प्रतिदिन A प्रकार के 15 खिलौने और B प्रकार के 30 खिलौने निर्मित होने चाहिएँ।
हल:
माना A प्रकार के x और B प्रकार के y खिलौने बनाए जाते हैं।
उद्देश्य फलन : Z = 7.5x + 5y का अधिकतमीकरण करना।
अवरोध : 12x + 6y ≤ 360, 18x ≤ 360, 6x + 9y ≤ 360, x, y ≥ 0
या 2x + y ≤ 60, x ≤ 20, 2x + 3y ≤ 120, x, y ≥ 0

(1) रेखा 2x + y = 60, बिन्दु A(30, 0) , B(0, 60) से होकर जाती है।
2x + y ≥ 60 में x = 0, y = 0 रखने पर, 0 ≤ 60 जो सत्य है।
⇒ 2x + y ≥ 60 रेखा AB पर है या उसके नीचे है।
(2) x ≤ 20 के बिन्दु x =0 और x = 20 के बीच में स्थित हैं।
(3) रेखा 2x + 3y = 8, बिन्दु C (60, 0), D (0, 40) से होकर जाती है।
2x +3y ≤ 120 में x = 0, y = 0 रखने पर 0 ≤ 120, जो सत्य है।
⇒ 2x + 3y ≤ 120 के क्षेत्र बिन्दु रेखा CD पर हैं या उसके नीचे हैं।
(4) x ≥ 0 के क्षेत्र बिन्दु y- अक्ष पर और उसके दायीं ओर हैं।
(5) y ≥ 0 के क्षेत्र बिन्दु x- अक्ष पर हैं और उसके ऊपर हैं।
(6) रेखा AB तथा CD क्रमश: 2x + y = 60, 2x + 3y = 120 बिन्दु P(15, 30) पर मिलती हैं।
(7) रेखा x = 20, रेखा AB, 2x + y = 60 और बिन्दु Q(20, 20) पर मिलती है।
समस्या के सुसंगत क्षेत्र ODPQR छायांकित किया जाता
उद्देश्य फलन : Z = 7.5x + 5y
बिन्दु D(0, 40) पर,
Z = 7.5 x 0 + 5 x 40 = 200
बिन्दु P(15, 30) पर,
Z = 7.5 x 15 + 5 x 30 = 112.5 + 150 = 262.50
बिन्दु Q(20, 20) पर,
Z=7.5 x 20 + 5 x 20 = 150 +100 = 250
बिन्दु R(20,0) पर,
Z = 7.5 x 20 + 0 = 150
इसलिए अधिकतम लाभ 262.50 रु० तब होगा। यदि 15 खिलौने A प्रकार के और 30 खिलौने B प्रकार के बनाए जाएँ।

प्रश्न 5.
एक हवाई जहाज अधिकतम 200 यात्रियों को यात्रा करा सकता है। प्रत्येक प्रथम श्रेणी के टिकट पर Rs. 1000 और सस्ते श्रेणी के टिकट पर Rs. 600 का लाभ कमाया जा सकता है। यद्यपि एयरलाइन कम-से-कम 20 सीटें प्रथम श्रेणी के लिए आरक्षित करती है तथापि प्रथम श्रेणी की अपेक्षा कम-से-कम 4 गुने यात्री सस्ती श्रेणी के टिकट से यात्रा करने को वरीयता देते हैं। ज्ञात कीजिए कि प्रत्येक प्रकार के कितने-कितने टिकट बेचे जाएँ ताकि लाभ का अधिकतमीकरण हो? अधिकतम लाभ कितना है?
हल:
माना प्रत्येक श्रेणी के x यात्री और सस्ती श्रेणी के y यात्री यात्रा करते हैं।
प्रथम श्रेणी के एक यात्री से Rs. 1000 का और सस्ती श्रेणी के एक यात्री से 600 रु० का लाभ होता है।
अब उद्देश्य फलन :
Z = 1000x + 600y
तथा अवरोध : x ≥ 20, x + y ≥ 200, y ≥ 4x, x, y ≥ 0
(1) x + y ≤ 200 का आरेख :
रेखा x + y = 200, बिन्दु (200, 0), (0, 200) से गुजरती है।
∴ x + y ≤ 200 में, x = 0, y = 0 रखने पर 0 ≤ 200 जो सत्य है।
⇒ x + y ≤ 200 के क्षेत्र बिन्दु रेखा x + y = 200 पर और उसके नीचे है।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 9
(2) x ≥ 20 के क्षेत्र बिन्दु रेखा x = 20 पर और उसके दायीं ओर हैं।
(3) y ≥ 4x का आरेख :
रेखा y = 4x, मूल बिन्दु 0 (0, 0) और B (40, 160) से होकर गुजरती है।
y – 4x ≥ 0 में x = 0, y = 40 रखने पर 40 20 जो सत्य है।
⇒ y – 4x ≥ 0 के क्षेत्र बिन्दु OB पर और उसके ऊपर हैं।
(4) x ≥ 0 के क्षेत्र बिन्दु y- अक्ष पर और उसके दाईं ओर हैं।
(5) y ≥ 0 के क्षेत्र बिन्दु x- अक्ष पर और उसके ऊपर हैं।
(6) रेखा x = 20 और y = 4x बिन्दु C(20, 80) पर मिलती हैं।
(7) रेखा y = 4x और x + y = 200 बिन्दु B(40, 160) पर मिलती हैं।
(8) रेखा x = 20 और x + y = 200 बिन्दु A(20,180) पर मिलती हैं।
समस्या का सुसंगत क्षेत्रABC है जिसे छायांकित किया गया है।
अब उद्देश्य फलन : Z = 1000x + 600y
बिन्दु A (20,180) पर,
Z = 1000 x 20 + 600 x 180
= 20000 + 108000 = 128000
बिन्दु B (40,160) पर,
Z = 1000 x 40 + 600 x 160
= 40000 + 96000 = 136000
बिन्दु C (20, 80) पर,
Z = 1000 x 20 + 600 x 80
= 20000 + 48000 = 68000
इसलिए अधिकतम लाभ Rs. 136000 पाने के लिए 40 यात्री प्रथम श्रेणी और 160 सस्ती श्रेणी में होने चाहिए।

प्रश्न 6.
दो अन्न भंडारों A और B की भंडारण क्षमता क्रमश: 100 क्विटल और 50 क्विटल हैं। उन्हें तीन राशन की दुकानों D, E और F पर अन्न उपलब्ध कराना पड़ता है। जिनकी आवश्यकताएँ क्रमश: 60, 50 और 40 क्विटल हैं।
भंडारों से दुकानों को प्रति क्विटल परिवहन व्यय निम्न सारणी के अनुसार है-
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 10
परिवहन व्यय के न्यूनतमीकरण के लिए आपूर्ति का परिवहन कैसे किया जाए? न्यूनतम परिवहन मूल्य क्या है?
हल:
माना भंडारण A से D दुकान पर x क्विटल भंडार और E को y क्विटल भंडार भेजा जाता है। भंडार A में कुल 100 क्विटल की भंडारण क्षमता है।
∵ A से F दुकान को भंडार भेजा जाता है
= 100 – (x + y) क्विटल
D दुकान में कुल भंडार = 60 क्विटल
भंडार B से D दुकान को भंडार भेजा जाता है
= 60 – x क्विटल
इसी प्रकार, B से दुकान E को भंडार भेजा जाता है
= 50 – y क्विटल
भंडार B में कुल भंडारण क्षमता = 50 क्विटल
⇒ B से दुकान F में भंडार भेजा जाता है।
= 50 – (60 – x + 50 – y) = x + y – 60 क्विटल
भंडार A और B में दुकान D, E, F को भेजा गया भंडार
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 11
अवरोध : x ≥ 0, y ≥ 0, 100 – x – y ≥ 0, x + y ≥ 100, 600 – x ≥ 0
या x ≤ 60, 50 – y ≥ 0 या y ≤ 50
x + y – 60 ≥ 0 या x + y ≥ 60
कुल परिवहन व्यय
= 6x + 3y + 2.5 (100 – x – y) + 4 (60 – x) + 2 (50 – y) + 3 (x + y – 60)
= 6x + 3y + 250 – 2.5x – 2.5y + 250 – 4x + 100 – 2y + 3x + 3y – 180
= 2.5x + 1.5y + 410

(1) x ≥ 0क्षेत्र के बिन्दु y- अक्ष पर और उसकी दायीं ओर है।
(2) y ≥ 0 क्षेत्र के बिन्दु x- अक्ष पर और उसके ऊपर हैं।
(3) x + y ≤ 100 का आरेख :
रेखा x + y = 100 बिन्दु (100, 0) और (0, 100) से होकर जाती है।
∴ x + y ≤ 100 में x = 0, y = 0 रखने पर, 0 5100 जो सत्य
→ x + y ≤ 100 के क्षेत्र बिन्दु रेखा x + y = 100 पर या इसके नीचे हैं।
(4) x ≤ 60 का क्षेत्र x = 60 पर और इसके बायीं ओर है।
(5) y ≤ 50 के क्षेत्र बिन्दु y = 50 पर और उसके नीचे हैं।
(6) x + y ≥ 60 का आरेख :
रेखा x + y = 60, बिन्दु (60,0) और (0, 60) से गुजरती है।
∴ x + y ≥ 60 में x = 0 और y = 0 रखने पर, 0 ≥ 60 जो सत्य नहीं है।
⇒ x + y ≥ 60 के क्षेत्र बिन्दु x + y = 60 पर और उसके ऊपर हैं।
इस समस्या का सुसंगत क्षेत्र ABCD है।
(i) रेखा AB : y = 50 और AD: x + y = 60 के प्रतिच्छेद बिन्दु A(10, 50) हैं।
(ii) रेखा BC : x + y = 100 और AB: = 50 के प्रतिच्छेद बिन्दु B(50, 50) हैं।
(iii) रेखा BC : x + y = 100 और AD : x + y = 60 के प्रतिच्छेद बिन्दु C(60, 40) हैं।
(iv) रेखा CD: x = 60 और AD: x + y = 60 के प्रतिच्छेद बिन्दु D (60, 0) हैं।
अब, उद्देश्य फलन :
Z = 2.5x + 1.5y + 410
बिन्दु A(10, 50) पर,
Z = 2.5 x 10 + 1.5 x 50 + 410
= 25 + 75 + 410 = 510
बिन्दु B(50, 50) पर,
Z = 2.5 x 50 + 1.5 x 50 + 410
= 125 + 75 + 410 = 610
बिन्दु C(60, 40) पर,
Z = 2.5 x 60 + 1.5 x 40 + 410
= 150 + 60 + 410 = 620
बिन्दु D(60, 0) पर,
Z = 2.5 x 60 + 0 + 410
= 150 + 410 = 560
इस प्रकार Z का न्यूनतम मान 100 रु० है। जब भंडार A से दुकान D पर 10 क्विटल और दुकान E को 50 क्विटल भंडार भेजा जाता है।
अतः भंडार A से दुकान D, E, F को क्रमशः 10, 50, 40 क्विटल और भंडार B से दुकान D, E, F को क्रमशः 50, 0, 0 क्विटल भंडार भेजने से न्यूनतम परिवहन व्यय 100 रु० होगा।

प्रश्न 7.
एक तेल कारखाने में दो डिपो A तथा B हैं, जिनकी क्षमताएँ क्रमशः 7000 लीटर और 4000 लीटर की हैं। कारखाने द्वारा तीन पेट्रोल पंपों D, E और F के लिए आपूर्ति करनी है, जिनकी आवश्यकताएँ क्रमशः 4500 लीटर, 3000 लीटर और 3500 लीटर की हैं। डिपो से पेट्रोल पंपों की दूरियाँ (km में) निम्नांकित सारणी के अनुसार हैं-
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 13
यह मानते हुए कि परिवहन व्यय प्रति 10 लीटर पर प्रति किलोमीटर 1 रुपया है। ज्ञात कीजिए कि कैसी आपूर्ति योजना अपनाई जाए, जिससे परिवहन व्यय का न्यूनतमीकरण हो जाए? न्यूनतम व्यय क्या है?
हल:
माना डिपो A से D पेट्रोल पम्प को x लीटर और E पेट्रोल पम्प के y लीटर तेल की आपूर्ति होती है।
∴ डिपो A की कुल क्षमता = 7000 लीटर
⇒ डिपो A पेट्रोल पम्प F को तेल की आपूर्ति करता है
= 7000 – (x + y) लीटर
⇒ 7000 – (x + y) ≥ 0
∴ x+ y ≤ 7000 …(1)
पेट्रोल पम्प D की माँग = 4500 लीटर
∴ डिपो B से तेल की आपूर्ति = (4500 – x) लीटर 3
⇒ 4500 – x ≥ 0
या x ≤ 4500 …(2)
पेट्रोल पम्प E को तेल की आवश्यकता = 3000 लीटर
⇒ डिपो B पेट्रोल पम्प E को तेल-आपूर्ति करता है
= (3000-y) लीटर
⇒ 3000 – y ≥ 0
या y ≤ 3000 …(3)
पेट्रोल F को तेल की आवश्यकता है = 3500 लीटर
F को डिपो A द्वारा आपूर्ति हो चुकी है = 7000 – (x + y)
⇒ डिपो B द्वारा पेट्रोल पम्प F को तेल की आपूर्ति होती है
= 3500 – (7000 – x – y)
= – 3500 + x + y
या x + y ≥ 3500 …(4)
∴ अवरोध : x + y ≤ 7000, x ≤ 4500, y ≤ 3000, x + y ≥ 3500, y ≥ 0
∵ परिवहन व्यय प्रति 10 लीटर प्रति किलोमीटर = 1रुपया
∴ परिवहन व्यय प्रति लीटर प्रति किलोमीटर = 0.1 रुपया
परिवहन व्यय की सारणी निम्नवत् है-
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 14
परिवहन व्यय :
Z = 0.7x + 0.6y + 0.3 (7000 – x – y) + 0.3 (4500 – x) + 0.4 (3000 – y) + 0.2 (x + y – 3500)
= 0.3x + 0.1y + 3940
अब उद्देश्य फलन Z का न्यूनतमीकरण करते हैं।

(1) x + y ≤ 7000 का आरेख :
रेखा x + y =7000, बिन्दु (7000, 0) तथा (0, 7000) से गुजरती है।
∴ x + y ≤ 7000 में x = 0, y = 0 रखने पर, 0 ≤ 7000 जो सत्य है।
⇒ x + y ≤ 7000 रेखा x + y = 7000 पर और उसके नीचे का क्षेत्र है।
(2) x ≤ 4500 के क्षेत्र बिन्दु रेखा x = 4500 पर और उसके बायीं ओर स्थित हैं।
(3) y ≤ 3000 के क्षेत्र बिन्दु रेखा y = 3000 पर और उसके नीचे हैं।
(4) रेखा x + y = 3500 बिन्दु (3500, 0) (0, 35000) से होकर जाती हैं।
x + y ≥ 3500 में x = 0, y = 0 रखने पर 0 ≥ 3500 जो सत्य नहीं है।
या x + y ≥ 3500 के क्षेत्र बिन्दु रेखा x + y = 3500 पर हैं या उसके ऊपर हैं।
(5) x ≥ 0 के क्षेत्र बिन्दु y- अक्ष पर दायीं ओर हैं।
(6) y ≥ 0 के क्षेत्र बिन्दु x- अक्ष तथा उसके ऊपर हैं।
(7) x + y = 3500 रेखा y = 0 और y = 3000 से क्रमश: B(3500, 0) और A(500, 3000) पर मिलती हैं।
(8) x + y = 7000 रेखा x + 4500 और y = 3000 से
क्रमशः बिन्दु C (4500, 2500) और D (4000, 3000) पर मिलती हैं।
(9) रेखा x = 4500, x- अक्ष पर बिन्दु E (4500, 0) पर मिलती है।
समस्या का सुसंगत क्षेत्र ABECD है।
उद्देश्य फलन :
Z = 0.3x + 0.1y + 3950
बिन्दु A(500, 3000) पर,
Z = 0.3 x 500 + 0.1 x 3000 + 3950 = 4400
बिन्दु B(3500, 0) पर,
Z = 0.3 x 3500 + 0 + 3950 = 5000
बिन्दु E (4500, 0) पर,
Z = 0.3 x 4500 + 0 + 3950 = 5300
बिन्दु C (4500, 2500) पर,
Z = 0.3 + 4500 + 0.1 x 2500 + 3950 =5550
बिन्दु D (4000, 3000) पर,
Z = 0.3 x 4000 + 0.1 x 3000 + 3950 = 5450
∴ परिवहन व्यय 4400 रु० न्यूनतम होगा जब डिपो A पेट्रोल पम्प D, E, F को क्रमश: 500, 3000, 3500 लीटर तेल की आपूर्ति करते हैं और डिपो B पेट्रोल पम्प D, E, F को 4000,0, 0 लीटर के लिए तेल की सप्लाई करते हैं।

प्रश्न 8.
एक फल उत्पादक अपने बाग में दो प्रकार के खादों P ब्रांड़ और Q ब्रांड का उपयोग कर सकता है। मिश्रण के प्रत्येक थैले में नाइट्रोजन, फॉस्फोरिक अम्ल, पोटाश और क्लोरीन की मात्रा (kg में ) सारणी में दिया गया है। परीक्षण संकेत देते हैं कि बाग को कम-से-कम 240 kg फॉस्फोरिक अम्ल, कम-से-कम 270 kg पोटाश और क्लोरीन की अधिक-से-अधिक 310 kg की आवश्यकता है।
यदि उत्पादक बाग के लिए मिलाई जाने वाली नाइट्रोजन की मात्रा का न्यूनतमीकरण करना चाहता है तब प्रत्येक मिश्रण के कितने थैलों का उपयोग होना चाहिए? मिलाई जाने वाली नाइट्रोजन की निम्नतम मात्रा क्या है?
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 16
हल:
माना ब्रांड P के x थैले और ब्रांड Q के y थैले मिलाए जाते हैं।
थैलों की नाइट्रोजन की मात्रा
= 3x + 3.5y
उद्देश्य : Z = 3x + 3.5y का मान न्यूनतम हो।
मिश्रण में फॉस्फोरिक अम्ल की मात्रा
= (x +2y) kg
⇒ x + 2y ≥ 240
मिश्रण में पोटाश की मात्रा
= 3x + 1.5y
⇒ 3x + 1.5y ≥ 270
मिश्रण में क्लोरीन की मात्रा = 1.5x + 2y
= 1.5x + 2y ≤ 310
अवरोध : x + 2y ≥ 240, 3x + 1.5y ≥ 270, 1.5x + 2y ≤ 310, x, y ≥ 0

(1) x + 2y ≥ 240 का आरेख :
रेखा x + 2y = 240, बिन्दु A(0,120), B(240, 0) से गुजरती है।
∴ x + 2y ≥ 240 में x = 0, y = 0 रखने पर, 0 ≥ 240 जो सत्य नहीं है।
⇒ x + 2y ≥ 240 के क्षेत्र बिन्दु AB पर और उसके ऊपर
(2) 3x + 1.5y ≥ 270 का आरेख :
रेखा 3x+ 1.5y = 270, बिन्दु C (90,0) और D (0,180) से गुजरती है।
∴ 3x +1.5y ≥ 270 में x = 0, y = 0 रखने पर 0 ≥ 270 जो सत्य नहीं है।
⇒ 3x + 1.5y ≥ 270 के क्षेत्र के बिन्दु CD पर या उसके ऊपर है।
(3) 1.5x + 2y ≤ 310 का आरेख :
रेखा 1.5x + 2y ≤ 310 बिन्दु E  और F(0, 155) से होकर जाती है।
∴ 1.5x + 2y ≤ 310 में x = 0, y = 0 रखने पर 0 ≤ 310 जो सत्य है।
⇒ 1.5x + 2y ≤ 310 के क्षेत्र के बिन्दु EF पर या इसके नीचे हैं।
(4) x ≥ 0 के क्षेत्र के बिन्दु रेखा y- अक्ष पर हैं या उसके दायीं ओर हैं।
(5) y ≥ 0 के क्षेत्र बिन्दु रेखा x- अक्ष पर या उसके ऊपर हैं।
(6) रेखा AB: x + 2y = 240 और CD: 3x + 1.5y = 260 के प्रतिच्छेद बिन्दु Q(40, 100) हैं।
(7) रेखा AB: x + 2y = 240 तथा EF = 1.5x + 2y = 310 के प्रतिच्छेद बिन्दु R(140, 50) हैं।
(8) रेखा CD: 3x + 1.5y = 270 और EF = 1.5x + 2y = 310 के प्रतिच्छेद बिन्दु P(20, 140) हैं।
समस्या का सुसंगत क्षेत्र त्रिभुज POR है।
अब उद्देश्य फलन : Z = 3x + 3.5y
बिन्दु P(20, 140) पर,
Z = 3 x 20 + 3.5 x 140= 60 + 490 = 550
बिन्दु Q(40, 100) पर,
Z = 3 x 40 + 3.5 x 100 = 120 + 350 = 470
बिन्दु R(140, 50) पर,
Z = 3 x 140 + 3.5 x 50 = 420 + 175 = 595
∴ x + 40, y =100 पर Z का मान न्यूनतम है।
अतः ब्रांड P के 40 थैले तथा ब्रांड Q के 100 थैले मिलाए जाने चाहिए।
∴ नाइट्रोजन की न्यूनतम मात्रा 470 kg है।

प्रश्न 9.
उपर्युक्त प्रश्न 8 पर ध्यान दीजिए। यदि उत्पादक बाग में मिलाई जाने वाली नाइट्रोजन की मात्रा का अधिकतमीकरण चाहता है तो मिश्रण के कितने थैलों को मिलाया जाना चाहिए? मिलाई जाने वाली नाइट्रोजन की अधिकतम मात्रा क्या है?
हल:
प्रश्न 8 के हल से देखें,
Z = 3x + 3.5y
बिन्दु R (140, 50) पर Z अधिकतम है।
नाइट्रोजन की अधिकतम मात्रा 595 kg है जब 140 थैले ब्रांड P के और 50 थैले ब्रांड एके मिलाए जाने चाहिए।

प्रश्न 10.
एक खिलौना कम्पनी A और B दो प्रकार की गुड़ियों का निर्माण करती है। मार्किट परीक्षणों तथा उपलब्ध संसाधनों से संकेत मिलता है कि सम्मिलित उत्पादन स्तर प्रति सप्ताह 1200 गुड़ियों से अधिक नहीं होना चाहिए और B प्रकार की गुड़ियों की अधिक-से-अधिक माँग A प्रकार की गुड़ियों से आधी है। इसके अतिरिक्त A प्रकार की गुड़ियों का उत्पादन स्तर दूसरे प्रकार की गुड़ियों के उत्पादन स्तर के तीन गुने से 600 नग अधिक है। यदि कम्पनी A और B प्रत्येक गुड़िया पर क्रमश: Rs. 12 और Rs. 16 का लाभ कमाती है। लाभ का अधिकतमीकरण करने के लिए प्रत्येक के कितने नगों का साप्ताहिक उत्पादन करना चाहिए?
हल:
माना कम्पनी A प्रकार की x तथा B प्रकार की y गुड़ियों का उत्पादन करती है।
∴ कम्पनी को A प्रकार की गुडियों पर लाभ = 12 रु०
और B प्रकार की गुड़ियों पर लाभ = 16 रु०
कुल लाभ =12x + 16y
उद्देश्य फलन : Z = 12x + 16y का अधिकतमीकरण करना है।
दोनों प्रकार की गुड़ियों का उत्पादन = 1200
∴ x + y ≤ 1200 …(1)
A प्रकार की गुड़ियों का उत्पादन B प्रकार की गुड़ियों के उत्पादन के 3 गुने से 600 गुड़ियाँ अधिक है।
⇒ x – 3y ≥ 600 …(2)
B प्रकार की गुड़ियों की माँग अधिक-से-अधिक A प्रकार की गुड़ियों से आधी है।
MP Board Class 12th Maths Book Solutions Chapter 12 प्रायिकता विविध प्रश्नावली img 18
⇒ y ≤  या 2y – x ≤ 0 …(3)
अवरोध : x + y ≤ 1200, x – 3y ≥ 600, 2y – x ≤ 0, x, y ≥ 0.
(1) x + y ≤ 1200 का आरेख
रेखा x + y = 1200 बिन्दु A(0, 1200) और B (1200, 0) से गुजरती है।
∴ x + y ≤ 1200 में x = 0, y = 0 रखने पर 0 ≤ 1200 जो सत्य है।
⇒ x + y ≤ 1200 के क्षेत्र के बिन्दु AB पर और उसके नीचे हैं।
(2) x – 3y ≤ 600 का आरेख :
रेखा x – 3y = 600, बिन्दु C(600, 0), D (0, – 200) से गुजरती हैं।
∴ x – 3y ≤ 600 में x = 0, y = 0 रखने पर 0 ≤ 600 जो सत्य है।
⇒ x – 3y ≤ 600, CD पर मूल बिन्दु की ओर है अर्थात् CD के ऊपर है।
(3) 2y – x ≤ 0 का आरेख :
रेखा 2y – x = 0 मूल बिन्दु 0 और E (800, 400) से होकर गुजरती है।
∴ 2y – x ≤ 0 में x = 200, y = 0 रखने पर, – 200 ≤ 0 जो सत्य है।
⇒ 2y – x ≤ 0 क्षेत्र बिन्दु OP पर और OP के नीचे बिन्दु (200, 0) की ओर है।
∴ इसका क्षेत्र OP के नीचे है।
(4) x ≥ 0 के क्षेत्र बिन्दु y- अक्ष पर हैं और उसके दायीं ओर
(5) y ≥ 0 के क्षेत्र x- अक्ष पर हैं और उसके ऊपर हैं।
(6) रेखा AB: x + y = 1200 और x = 2y के प्रतिच्छेद बिन्दु P(800, 400) हैं।
(7) रेखा CD: x – 3y = 600 और AB : X + y =1200 के प्रतिच्छेद बिन्दु Q(1050, 150) हैं।
समस्या का सुसंगत क्षेत्र OPQC है।
अब, उद्देश्य फलन :
Z = 12x +16y
बिन्दु P (800, 400) पर,
Z = 12 x 800 +16 x 400
= 9600 + 6400 =16000
बिन्दु Q (1050,150) पर,
Z = 12 x 1050 + 16 x 150
= 12600 + 2400
= 15000
बिन्दु C (600, 0) पर,
Z = 12 x 600 + 16 x 0
= 7200 + 0 = 7200
∴ x = 800, y = 400 पर अधिकतम लाभ 16000 रु० है।
इस प्रकार अधिकतम लाभ 16000 रु० पाने के लिए A प्रकार की 800 और B प्रकार की 400 गुड़ियों का उत्पादन करना चाहिए।

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *