MP 12th Maths

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक

Ex 4.1

प्रश्न 1 से 2 तक में सारणिकों का मान ज्ञात कीजिए

प्रश्न 1.

प्रश्न 2.

=cose θ cosθ – (sin θ) × (-sin θ)
= cos2θ + sin2θ
= 1


= (x2 – x + 1)(x + 1) – (x + 1)(x – 1)
= (x + 1) – (x2 – 1) = x3 + 1 – x2 + 1
= x3 – x2 + 2

प्रश्न 3.

प्रश्न 4.


हलः
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.1 3

प्रश्न 5.
निम्नलिखित सारणिकों का मान ज्ञात कीजिए-
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.1 4
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.1 5

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.1 7
= 0[0-(-3) × 3][-1 × 0 – (-3) × (-2)] + 2[3 × (-1) – (-2) × 0]
= 0 × 9 – 1[0 – 6] + 2[-3 – 0]
= 0 – 1 × (-6) + 2 × (-3)
= 6 – 6 = 0

= 2[2 × 0 – (-1) × (-5)] + 1[0 × 0 – (-1) × 3] – 2[0 × (-5) – 2 × 3]
= 2[0 – 5] + 1[0 + 3] – 2 × [0 – 6]
= 2 × (-5) + 1 × 3 – 2 × (-6)
= -10 + 3 + 12 = -10 + 15 = 5

प्रश्न 6.

हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.1 9

प्रश्न 7.
x के मान ज्ञात कीजिए यदि

हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.1 11
⇒ 2 – 20 = 2x2 – 24
⇒ -18 = 2x2 – 24
⇒ 2x2 – 24 +18 = 0
⇒ 2x2 -6 =0
⇒ x2 = 3
⇒ x = ±3
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.1 12
⇒ 10 – 12 = 5x – 6x
-2x3 = – x
x = 2

प्रश्न 8.
यदि  हो तो x बराबर है-
(A) 6
(B) ±6
(C) -6
(D) 0
हल:

⇒ x × x -2 × 18 = 6 × 6 – 2 × 18
⇒ x2 – 36 = 36 – 36
⇒ x2 – 36 = 0
⇒ x = 36
∴ x = ±6
अतः विकल्प (B) सही है।

Ex 4.2

बिना प्रसरण किए और सारणिकों के गुणधर्मों का प्रयोग करके निम्नलिखित प्रश्न 1 से 5 को सिद्ध कीजिए-

प्रश्न 1.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 1
हल:

प्रश्न 2.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 3
हल:

प्रश्न 3.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 5
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 6

प्रश्न 4.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 7
हल:

प्रश्न 5.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 9
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 10

सारणिकों के गुणधर्मों का प्रयोग करके प्रश्न 6 से 14 तक को सिद्ध कीजिए-

प्रश्न 6.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 12
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 13
= 0 – a(0 + bc) – b(-ac + 0)
= -abc + abc
= 0
= R.H.S.

प्रश्न 7.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 14
हल:

प्रश्न 8.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 16
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 17

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 19

प्रश्न 9.

हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 20
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 21
= (x – y)(y – z)(z – x)[(z2 – xy) – z(x + y + z)]
= (x – y)(y – z)(z – x)[z2 – xy – xz – zy –z2]
= (x – y)(y – z)(z – x)[-(xy + yz + zx)]
= -(x – y)(y – z)(z – x)(xy + yz + zx)= R.H.S.

प्रश्न 10.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 22
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 23

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 25

प्रश्न 11.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 26
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 28
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 29
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 30

प्रश्न 12.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 31
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 33
= (1 – x)2 (1 + x + x2)[1 + x(1 + x)]
= (1 – x)2 (1 + x + x2 )[1 + x + x2]
= (1 – x)2 (1 + x + x2)2
= [(1 – x)(1 + x + x2)]2
= (1 – x3)2 = R.H.S.

प्रश्न 13.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 34
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 36

प्रश्न 14.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 37
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 38
R1 के अनुदिश प्रसरण करने पर
∆ = (a2 + 1)[(b2 + 1)(c2 + 1) – bc.cb] – ab [ab (c2 + 1) – bc.ca] + ac[ab. cb – ac.b2 + 1]
= (a2 + 1)[b2c2 + b2 + c2 + 1 – b2c2] – ab[abc2 + ab – abc] + ac[ab2c – acb2 – ac]
= (a2 + 1)(b2 + c2 + 1) – ab (ab) – ac (ac)
=a2b2 + a2c2 + a2 + b2 + c2 + 1 – a2b2 – a2c2
= 1 + a2 + b2 + c2
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.2 39

Ex 4.3

प्रश्न 1.
निम्नलिखित प्रत्येक में दिए गए शीर्ष बिन्दुओं वाले त्रिभुजों का क्षेत्रफल ज्ञात कीजिए।
(i) (1, 0), (6, 0), (4, 3)
(ii) (2, 7), (1, 1), (10, 8)
(iii) (-2, -3), (3, 2), (-1, -8)
हल:
(i) (1, 0), (6, 0), (4, 3)
त्रिभुज का क्षेत्रफल :

= [1(0 – 3) – 0(6 -4 ) + 1(18 – 0)]
= [-3 + 18]
 वर्ग इकाई

(ii) (2, 7), (1, 1), (10, 8) x1 = 2 y1 = 7, x2 = 1, y2 = 1, x3 = 10, y3 = 8
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.3 img 2
[2(1 × 1 – 1 × 8) – 7(1 × 1 – 10 × 1) + 1(1 × 8 – 10 × 1)]
[2 × (1 – 8) – 7(1 – 10) + 1(8 – 10)]
[2 × (-7) – 7 × (-9) + 1 × (-2)]
[-14 + 63 – 2] = [63 – 16]
= × 47 =  = 23 वर्ग इकाई

(iii) (-2, -3), (3, 2), (-1, -8) त्रिभुज का क्षेत्रफल

[-2(2 + 8) + 3 (3 + 1) + 1(-24 + 2)]
[-20 + 12 – 22]
[-30] = [30] ऋणात्मक चिन्ह को छोड़ने पर
= 15 वर्ग इकाई

प्रश्न 2.
दर्शाइए कि बिन्दु A (a, b + c), B (b, c + a) और C(c, a + b) संरेख हैं।
हल:
यहाँ त्रिभुज के शीर्ष A (a, b+ c),B (b, c + a) और C(c, a + b)
x1 = a x2 = b x3 = c y1 = b + c y2 = c + a y3 = a + b

C1 तथा C3 समान हैं।
अतः बिन्दु A, B, C संरेख हैं।

प्रश्न 3.
प्रत्येक में k का मान ज्ञात कीजिए यदि त्रिभुजों का क्षेत्रफल 4 वर्ग इकाई है, जहाँ शीर्षबिन्दु निम्नलिखित हैं-
(i) (k, 0), (4, 0), (0, 2)
(ii) (-2, 0), (0, 4), (0, k)
हल:
(i) (k, 0), (4, 0), (0, 2)
त्रिभुज का क्षेत्रफल = 4 वर्ग इकाई
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.3 img 5
[k(-2) + 0 + 1(8)] = ±4
⇒ -k + 5 = ±4
⇒ k= 0 या 8

(ii) त्रिभुज के शीर्ष (-2, 0), (0, 4), (0, k)
x1 = -2, x2 = 0, x3 = 0
y1 = 0, y21 = 4, y3 = k

±4 = [-2(4 – k) + 1(0 – 0)]
±8 = -2(4 – k) ⇒ ±8 = k – 8
+ चिह्न लेने पर, 8 = 2k – 8 ⇒ 2k = 16 ∴ k = 8
-चिह्न लेने पर, -8 = 2k – 8 ∴ k = 0

प्रश्न 4.
(i) सारणिकों का प्रयोग करके (1, 2) और (3, 6) को मिलाने वाली रेखा का समीकरण ज्ञात कीजिए।
(ii) सारणिकों का प्रयोग करके (3, 1) और (9, 3) को मिलाने वाली,रेखा का समीकरण ज्ञात कीजिए।
हल:
(i) माना बिन्दु A (1, 2) व B(3, 6) से मिलाने वाले रेखाखण्ड पर स्थित बिन्दु P(x, y) हैं।
इसलिए बिन्दु A, B, P संरेख होंगे।
∴ ∆PAB का क्षेत्रफल = 0
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.3 img 9
⇒ x (2 – 6) – y(1 – 3) + 1(6 – 6) = 0
⇒ -4x + 2y = 0
⇒ 2x – y = 0
अतः अभीष्ट रेखा का समी० 2x – y = 0 है।

(ii) माना कोई बिन्दु (x, y) है।
तो त्रिभुज के शीर्ष (x, y), (3, 1) और (9, 3)

∆ = [x × (-2) – y(-6) + 1 × 0]
∆ = [-2x + 6y] = -x + 3y
बिन्दु (x, y), (3, 1), (9, 3) संरेख हैं।
यदि ∆ = 0
∴ 0 = -x + 3y ⇒ x – 3y = 0

प्रश्न 5.
यदि शीर्ष (2, -6), (5, 4) और (k, 4) वाले त्रिभुज का क्षेत्रफल 35 वर्ग इकाई है तो k का मान है
(A) 12
(B) -2
(C) -12, -2
(D) 12 ,-2
हल:
त्रिभुज के शीर्ष (2, -6), (5, 4) तथा (k, 4)
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.3 img 8
±35 = [2(4 – 4) + 6(5 – k) + 1(20 -4k)]
±35 =  [2 x 0 + 6(5 – k) + 1(20 – 4k)]
±70 = 6(5 – k) + 20 – 4k
±70 = 30 – 6k + 20 – 4k
±70 = 50 = 10k ⇒ ±7 – 5 – k
+ चिह्न लेने पर, 7 = 5 – k
k = 5 – 7 = -2
– चिह्न लेने पर, -7 = 5 – k ⇒ -12 = -k
∴ k = 12
अतः k = -2, 12
अत: विकल्प (D) सही है।

Ex 4.4

निम्नलिखित सारणिकों के अवयवों के उपसारणिक एवं सहखण्ड लिखिए।

प्रश्न 1.

हल:

a11 का उपसारणिक M11 = 3
a12 का उपसारणिक M12 = 0
a21 का उपसारणिक M21 = -4
a22 का उपसाराणिक M22 = 2
a11 का सहखण्ड = A11 = (-1)1+1
M11 = (-1)2 × 3 =3
a12 का सहखण्ड = A12 = (-1)1+2
M12 = (-1)3 × 0 = 0
a21 का सहखण्ड = A13 = (-1)2 + 1
M21 = (-1)3 × (-4) = 4
a22 का सहखण्ड = A22 = (-1)2+2
M22 = (-1)4 × 2 = 2

(ii) यहाँ सारणिक  के अवयवों के उपसारणिक निम्न हैं-
M11 = d
M12 = b
M21 = c
M22 = a
इसलिए सहखंड निम्न होंगे-
A11 = d
A12 = -b
A21 = -c
तथा A22 = 1

प्रश्न 2.

हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.4 img 3
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.4 img 4
A11 = (-1)1+1 M11 = (-1)2 × 1 = 1
A12 = 11+2 M12 = (-1)3 × 0= 0
A13 = (-1)1+3 M13 = (-1)4 × 0 = 0
A21 = (-1)2+1 M21 = (-1)3 × 0 = 0
A22 = (-1)2+2 M22 = (-1)4 × 1 = 1
A23 = (-1)2+3 M23 = (-1)5 × 0 = 0
A31 =(-1)3+1 M31 = (-1)4 × 0 = 0
A32 = (-1)3+2 M32 = (-1)5 × 0= 0
A33 = (-1)3+3 M33 = (-1)6 × 1 = 1

(ii) यहाँ  उपसारणिक और सहखण्ड की परिभाषां से a1 का उपसारणिक M1 =  = 10 + 1 = 11
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.4 img 6
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.4 img 7

प्रश्न 3.
दूसरी पंक्ति के अवयवों के सहखण्डों का प्रयोग करके ∆ =  का मान ज्ञात कीजिए।
हल:

दूसरी पंक्ति से सारणिक का विस्तार करने पर,
∆ = a21 A21 + a22 A22 + a23 A23
= 2 × 7 + 0 × 7 + 1 × (-7)
= 14 + 0 – 7 = 7

प्रश्न 4.
तीसरे स्तम्भ के अवयवों के सहखण्डों का प्रयोग करके ∆ =  का मान ज्ञात कीजिए।
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.4 img 9

∴ ∆ = a13 A13 + a23 A23 + a33 A33
= yz (z – y) + zx (-z + x) + xy(y – x)
= yz2 – y2z – xz2 + x2z + xy2 – x2y
= (-y2z + yz2) + (y2 – xz2) + (-x2y + x2z)
= – yz (y – z) + x(y2 – z2 ) – x2(y – z)
= (y – z)[-yz + x (y + z) – x2]
= (y – z)[z (x – y) – x(x – y)]
= (y – z)(x – y)(z – x)
= (x – y)(y – z)(z – x)

प्रश्न 5.
यदि ∆ =  और aij का सहखण्ड Aij हो तो ∆ का मान निम्नलिखित रूप में व्यक्त किया जाता है
(A) A11 A31 + a12 A32 + a13 A33
(B) a11 A11 + a12 A21 + a13 A31
(C) a21 A11 + a22 A12 + a23 A13
(D) a11 A11 + a21 A21 + a31 A31
हल:
∆ = किसी पंक्ति (या स्तम्भ) के अवयवों तथा उनके संगत सहखण्डों के गुणन का योग
C1 स्तम्भ के अवयव (a11, a21, a31)
इनमें सहखण्ड a11, A21, A31
⇒ ∆ = a11 A11 + a21 A21 + a31 A31
अत: विकल्प (D) सही है।

Ex 4.5

प्रश्न 1 और 2 में प्रत्येक आव्यूह का सहखंडज E (adjoint) ज्ञात कीजिए।

प्रश्न 1.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 1
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 2

प्रश्न 2.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 4
हल:

प्रश्न 3 और 4 में सत्यापित कीजिए कि A (adj A) = (adj A). A =|A|. I है।

प्रश्न 3.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 6
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 7

प्रश्न 4.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 9
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 10

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 12
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 13

प्रश्न 5 से 11 में दिए गए प्रत्येक आव्यूहों के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।

प्रश्न 5.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 14
हल:

प्रश्न 6.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 16
हल:

प्रश्न 7.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 18
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 50
प्रश्न 8.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 21
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 23
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 24

प्रश्न 9.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 25
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 27

प्रश्न 10.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 28
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 29

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 31

प्रश्न 11.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 32
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 51

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 35

प्रश्न 12.
यदि A =  है तो सत्यापति कीजिए कि (AB)-1 = B-1A-1 है|
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 37
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 38

प्रश्न 13.
यदि  है तो दर्शाइए कि A2 – 5A + 7I = 0 है। इसकी सहायता से A-1 ज्ञात कीजिए।
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 40

प्रश्न 14.
आव्यूह  के लिए a और b ऐसी संख्याएँ ज्ञात कीजिए ताकि A2 + aA + bI = 0 हो।
हल:

संगत अवयवों की तुलना करने पर
8 + 2a = 0 ⇒ a = -4
11 + 3a + b = 0 ⇒ b = -11 + 12 = 1
अतः a = -4, b = 1

प्रश्न 15.
आव्यूह  के लिए दर्शाइए कि A3 – 6A2 + 5A + 11I = 0 है। इसकी सहायता से A-1 ज्ञात कीजिए।
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 42

अब A-1 ज्ञात करने के लिए गणना
∵ A3 – 6A2 + 5A + 11I = 0
दोनों और A-1 से गुणा करने पर
(A-1A)A2 – 6(A1 A)A + 5A-1 A + 11A-1I = 0
⇒ IA2 – 6IA + 51 + 11A-1 = 0
⇒ A2 – 6A + 5I + 11A-1 = 0
⇒ 11A-1 = -A2 + 6A – 5I
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 44

प्रश्न 16.
यदि , तो सत्यापित कीजिए कि A3 – 6A2 + 9A – 4I =0 है तथा इसकी सहायता से A-1 ज्ञात कीजिए।
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 45

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 47
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 48
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.5 img 49

प्रश्न 17.
यदि A, 3 × 3 कोटि का वर्ग आव्यूह है तो | adj A | का मान है
(A)|4|
(B)| A|2
(C)|A}3
(D) 3| A|
हल:
adj A = | A|n-1, यहाँ n =3
∴ | adj A = | A2
अतः विकल्प (B) सही है।

Ex 4.6

निम्नलिखित प्रश्नों में 1 से 6 तक दी गई समीकरण निकायों का संगत अथवा असंगत के रूप में वर्गीकरण कीजिए।

प्रश्न 1.
x + 2y = 2
2x + 3y = 3
हल:
दिए गये समीकरण निकाय को हम इस प्रकार से लिख सकते हैं।
AX = B

प्रश्न 2.
2x – y = 5
x + y = 4
हल:
दिया गया समीकरण निकाय
2x – y = 5
x + y = 4
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 2

प्रश्न 3.
x + 3y = 5
2x + 6y = 8
हल:
दिए गए समीकरण निकाय को हम इस प्रकार से लिख सकते हैं।
AX = B
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 3

प्रश्न 4.
x + y + = 1
2x + 3y + 2z = 2
ax + ay + 2az =4
हल:
दिया गया समीकरण निकाय
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4

= a[1(6 – 2) – 1(4 – 2) + 1(2 – 3)]
= a [1 × 4 – 1 × 2 + 1(-1)]
= a[4 – 2 – 1] = a × 1 = a ≠ 0
अतः दिया गया समीकरण निकाय संगत है।

प्रश्न 5.
3x – y – 2z = 2
2y – z = -1
3x – 5y = 3
हल:
3x – y – 2z = 2
2y – z = -1
3x – 5y = 3
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 6

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 8

प्रश्न 6.
5x – y + 4z = 5
2x + 3y + 5z = 2
5x – 2y + 6z = -1
हल:
दिए गए समीकरण निकाय को निम्न प्रकार से लिख सकते हैं
AX = B
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 9
= 5(18 + 10) + 1(12 – 25) + 4(-4 – 15)
= 140 – 13 – 76
= 51 ≠ 0
अतः समीकरण निकाय संगत है।

निम्नलिखित प्रश्न 7 से 14 तक प्रत्येक समीकरण निकाय को आव्यूह विधि से हल कीजिए।

प्रश्न 7.
5x + 2y = 4
7x + 3y = 5
हल:
दिया गया समीकरण निकाय
5x + 2y = 4
7x + 3y = 5

प्रश्न 8.
2x – y = -2
3x + 4y = 3
हल:
दी गई समीकरण निकाय
2x – y = -2
3x + 4y = 3
उपरोक्त समीकरणों को निम्न प्रकार से लिख सकते हैं-
AX = B
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 11
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 12

प्रश्न 9.
4x – 3y = 3
3x – 5y = 7
हल:
दिया गया समीकरण निकाय
4x – 3y = 3
3x – 5y = 7
समीकरण निकाय AX = B के रूप में लिखा जा सकता है, जहाँ

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 14

प्रश्न 10.
5x + 2y = 3
3x + 2y = 3
हल:
दिया गया समीकरण निकाय
5x + 2y = 3
3x + 2y = 5
समीकरण निकाय AX = B के रूप में लिखा जा सकता है, जहाँ
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 15

प्रश्न 11.
निम्नलिखित समीकरण निकाय को आव्यूह विधि से हल कीजिए
2x + y + z = 1
x – 2y -2z = 3/2
3y – 5z = 9
हल:
दी गई समीकरण निकाय को निम्न प्रकार से लिख सकते हैं-
AX = B
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 17
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 18

प्रश्न 12.
x – y + z = 4
2x + y – 3z = 0
x + y + z = 2
हल:
दिया गया समीकरण निकाय
x – y + z = 4
2x + y – 3z = 0
x + y + z = 2
समीकरण निकाय AX = B के रूप में लिखा जा सकता है, जहाँ,
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 20

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 22

प्रश्न 13.
2x + 3y + 3z = 5
x – 2y + 2 = -4
3x – y – 2z = 3
हल:
दिया गया समीकरण निकाय
2x + 3y + 3z = 5
x – 2y + z = -4
3x – y – 2z = 3
समीकरण निकाय को AX = B के रूप में लिखा जा सकता है, जहाँ
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 23

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 25

प्रश्न 14.
x – y + 2z = 7
3x + 4y – 5z = -5
2x – y + 3z = 12
हल:
दिया गया समीकरण निकाय
x – y + 2z = 7
3x + 4y – 5z = -5
2x – y + 3z = 12
समीकरण निकाय को AX = B के रूप में लिखा जा सकता है, जहाँ
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 26

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 28

प्रश्न 15.
यदि  है तो A-1 ज्ञात कीजिए। A-1 का प्रयोग करके निम्नलिखित समीकरण निकाय को हल कीजिए।
2x – 3y + 5z = 11
3x + 2y – 4z = -5
x + y – 2z = -3
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 29
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 30

प्रश्न 16.
4 kg प्याज, 3 kg गेहूँ और 2 kg चावल का मूल्य Rs. 60 है। 2 kg प्याज, 4kg गेहूँ और 6 kg चावल का मूल्य Rs. 90 है। 6 kg प्याज, 2 kg गेहूँ और 3 kg चावल का मूल्य Rs. 70 है। आव्यूह विधि द्वारा प्रत्येक का मूल्य प्रति kg ज्ञात कीजिए।
हल:
माना प्याज, गेहूँ तथा चावल का मूल्य प्रति किग्रा क्रमश: x रु०, ५ रु० तथा 2 रु० है।
4 किग्रा प्याज 3 किया गेहूँ तथा 2 किग्रा चावल का मूल्य = 60 रुपये
∴ 4x + 3y + 2z = 60 …(1)
2 किग्रा प्याज, 4 किग्रा गेहूँ तथा 6 किग्रा चावल का मूल्य = 90 रु०
∴ 2x + 4y + 6z = 90 …(2)
6 किया प्याज, 2 किग्रा गेहूँ तथा 3 किग्रा चावल का मूल्य = 70 रु०
∴ 6x + 2y + 3z = 70 ….(3)
अब समीकरण निकाय
4x + 3y + 2z = 60
2x + 4y + 6z = 90
या x + 2y + 32 = 45
6x + 2y + 3z = 70
इसे AX = B के रूप में लिख सकते हैं, जबकि
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 32

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक Ex 4.6 34
अत: प्याज, गेहूँ तथा चावल का मूल्य प्रति किग्रा क्रमश: 5 रु०,8 रु०, तथा 8 रु० है।

विविध प्रश्नावली

प्रश्न 1.
सिद्ध कीजिए कि सारणिक
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 1
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 2
= x(-x2 – 1) – sin θ (-xsin θ – cos θ) + cos θ(-sin θ + xcosθ)
= -x(x2 + 1) + xsin2θ + sinθcos θ – sin θcos θ + xcos2θ
= -x(x2 + 1) + x (sin2θ + cos2θ)
= -x(x2 + 1) + x = -x[x2 + 1 – 1] = -x3
जो कि θ से स्वतन्त्र है।

प्रश्न 2.
सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 3
हल:

प्रश्न 3.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 5
का नाम ज्ञात कीजिए
हल:

प्रश्न 4.
यदि a, b और c वास्तविक संख्याएँ हों और सारणिक
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 7
हो तो दर्शाइए कि या तो a + b + c = 0 या a = b = c है|
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 9
[R2 → R2 – R1 तथा R3 → R3 – R1]
= 2(a + b + c)[1{(b – c)(c – b) – (c – a)(b – a)} – (c + a){0 – 0} + (a + b){0 – 0}]
= 2(a + b + c)[-{(b – c)}2 – (bc – ac – ab + a2)]
= 2(a + b + c)[-b2 – c2 + 2bc – bx + ac + ab – a2]
= 2(a + b + c)[-b2 – c2 + bc + ac + ab – a2]
= 2(a + b + c)[a2 + b2 + c2 – ab – bc – ca]
= -(a + b + c)[2a2 + 2b2 + 2c2 – 2ab -2bc – 2ca]
= -(a + b + c)[(a – b) + (b – c) + (c – a)2
अब ∆ = 0 ⇒ a + b + c = 0 या a = b = c

प्रश्न 5.
यदि a ≠ 0 हो तो समीकरण
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 10
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 12

प्रश्न 6.
सिद्ध कीजिए कि
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 13
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 15
∆ = 2a2b2c[(a+ c)(1 – 0) – 1(a + b – b – c)]
= 2a2b2c[a + c – a + c] = 2a2b2c
2c = 4a2b2c2

प्रश्न 7.
यदि A-1 = हो तो (AB)-1 का मान ज्ञात कीजिए।
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 17
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 18

प्रश्न 8.
मान लीजिए कि  हो तो सत्यापित कीजिए कि
(i) [adj A]-1 = adj (A-1)
(ii) (A-1)-1 = A
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 19

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 21

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 56

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 23

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 24
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 59

प्रश्न 9.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 28
का मान ज्ञात कीजिए।
हल:

प्रश्न 10.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 30
का मान ज्ञात कीजिए।
हल:

सारणिकों के गुणधर्मों का प्रयोग करके निम्नलिखित 11 से 15 तक प्रश्नों को सिद्ध कीजिए

प्रश्न 11.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 32
हल:
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 33

प्रश्न 12.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 35
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 37

प्रश्न 13.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 38
हल:

[R1 → R2 – R1 तथा R3 → R3 – R1]
= (a + b + c)[1{(2b + a)+ (2c + a) – (a – b)(a – c)}]
= (a + b + c)[4bc + 2ab + 2ac + a2 – (a2 – ac – ab + bc)]
= (a + b + c)[4bc + 2ab + 2ac + a2 – a2 + ac + ab – bc]
= (a + b + c)(3bc + 3ab + 3ac]
= 3 (a + b + c) (ab + bc + ca) = R.H.S.
अतः L.H.S. = R.H.S.

प्रश्न 14.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 40
हल:

प्रश्न 15.
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 42
हल:

प्रश्न 16.
निम्नलिखित समीकरण को हल कीजिए
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 44
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 46
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 47

निम्नलिखित प्रश्नों 1 से 3 में सही उत्तर का चुनाव कीजिए।

प्रश्न 1.
यदि a, b, c समान्तर श्रेणी में हों तो सारणिक
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 49
(A) 0
(B) 1
(C) x
(D) 2x
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 51

प्रश्न 2.
यदि x, y, z शून्येतर वास्तविक संख्याएँ हों तो आव्यूह A =  का व्युत्क्रम है-
MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 52
हल:

MP Board Class 12th Maths Book Solutions Chapter 4 सारणिक विविध प्रश्नावली img 54

प्रश्न 3.

(A) det (A) = 0
(B) det (A) ϵ (2, ∞)
(C) det (A) ϵ (2, 4)
(D) det (A) ϵ [2, 4]
हल:

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *