MP 12th Maths

MP Board Class 12th Maths Important Questions Chapter 2 Inverse Trigonometric Functions

MP Board Class 12th Maths Important Questions Chapter 2 Inverse Trigonometric Functions

MP Board Class 12th Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Important Questions

Very Short Answer Type Questions

Question 1.
Find the principle value of the following?

Question 2.
Prove the following:

Question 7.
Prove that: 3 sin-1 x = sin-1 (3x – 4x3)? (NCERT, CBSE 2018)
Solution:
Let sin-1 x = θ
⇒ x = sin θ
We know that sin 3θ = 3 sinθ – 4 sin3 θ
= 3x – 4x3
⇒ 3θ = sin-1 ( 3x – 4x3)
⇒ 3.sin-1 x = sin-1(3x – 4x3). proved.

Question 8.
Prove that: 3 cos-1 x = cos-1 (4x3 – 3x)? (NCERT)
Solution:
Let cos-1 x = cos θ
⇒ x = cos θ
We know that cos 3θ = 4 cos3θ – 3 cos θ
= 4x3 – 3x
⇒ 3θ = cos-1 (4x3 – 3x)
⇒ 3 cos-1x = cos-1 (4x3 – 3x). Proved.

Question 9.
Prove the following:

Question 10.
Prove that:

  1. sec-1 x + cosec-1 x = 
  2. sin-1x + cos-1x = 
  3. tan-1x + cot-1x = 

Solution:
1. sec-1 x + cosec-1x = 
Let sec -1 x = θ
∴x = sec θ
⇒ x = cosec (  – θ)
⇒ cosec -1 x =  – θ. Proved.

2. sin-1 x + cos-1 x = 
Let sin-1 x = θ ……………………. (1)
⇒ x = sin θ
⇒ x = cos (  – θ)
⇒ cos -1 x =  – θ ………………. (2)
Adding eqns (1) and (2),
sin -1 x + cos -1 x = θ +  – θ
⇒ sin -1 x + cos-1 x = π2 Proved.

3. tan -1 x + cot-1 x = 
Let tan -1 x = θ
⇒ x = tan θ
⇒ x = cot (  – θ)
⇒ cot -1 x =  – θ
Adding eqns. (1) and (2),
tan -1 x + cot -1 x = . Proved.

Question 11.
Prove the following:

2. Solve like Q.No. 11 (A).

3. Solve like Q.No. 11(A).

Question 12.
Prove that:

2. Solve like Q.No. 12 (A).

3. Solve like Q.No. 12 (A).

Question 13.
tan-1 1 + tan-1 2 + tan-1 3 = π?
Solution:
L.H.S. = tan-1 1 + (tan-1 2 + tan-1 3)

= tan-1 (1) + π + tan-1 (-1)
= tan-1 (1) + π – tan-1 (1), [∵tan-1 (-x) = – tan-1 x]
= π = R.H.S. Proved.

Question 16.
Prove that:
sin (cos-1 x ) = cos (sin-1 x)?
Solution:
L.H.S. = sin(cos-1 x)
= sin [  – sin -1 x],
[∵ sin-1 x + cos-1x =  , cos-1x =  – sin-1 x]
= cos (sin-1 x), [ ∵sin (90° – θ) = cos θ ]
= R.H.S. Proved.

Question 17.
(A) Prove that:

Question 18.
Solve the equation:

Question 19.
solve the equation:

Question 20.
(A) Prove the following:

Question 23.
If tan-1 a + tan-1 b + tan-1 c =  then prove that ab + bc + ca = 1?
Solution:
tan-1 a + tan-1 b + tan-1 c =  , given
⇒ tan-1 a + tan-1 b + tan -1 c = tan-1 a + cot-1 a, [∵tan-1 a + cot -1 a =  ]
⇒ tan-1 b + tan-1c = cot-1 a

⇒ ab + ca = 1 – bc
⇒ ab + bc + ca = 1. Proved.

Long Answer Type Questions

Question 1.
(A) Prove that:

(B) Solve the following equation:
sin-1 x + sin-1 (1 – x) = sin-1
Solution:
Let sin-1 x = α ∴ x = sin α
Here α + sin-1 ( 1 – sin α) = sin-1
⇒ α + sin-1 ( 1 – sin α) = sin-1 cos α
⇒ α + sin-1 ( 1 – sin α) = sin-1. sin (  – α)
⇒ α + sin-1 ( 1 – sin α) =  – α
⇒ sin-1 ( 1 – sin α) =  – 2α
⇒ 1 – sin α = sin (  – 2α)
⇒ 1 – sin α = cos 2α
⇒ 1 – cos 2α = sin α
⇒ 2 sin2α = sin α
⇒ sin α =  ∴ α =
or x =

Question 2.

Question 3.
Write in simplest form:

Question 4.
(A) Prove the following:

Question 5.
Solve the following equation:

Question 6.

Question 7.
If cos-1 x + cos-1 y + cos-1 z = π then prove that:
x2 + y2 + z2 + 2xyz = 1?
Solution:
Given: cos-1 x + cos-1 z = π
⇒ cos-1 x + cos-1 y = π- cos-1 z

Squaring on both sides
x2y2 + z2 + 2xyz = (1 – x2) (1 – y2)
⇒ x2y2 + z2 + 2xyz = 1 – y2 – x2 + x2y2
⇒ z2 + 2xyz = 1 – y2 – x2
⇒ x2 + y2 + z2 + 2xyz = 1. Proved.

Question 12.
Prove that:

= tan-1 (tan 3θ) – tan-1 (tan 2θ)
= 3θ – 2θ
= θ
= tan-1 2x
= R.H.S. Proved.

Question 13.
Prove that:

Objective Type Questions:

Question 1.
Choose the correct answer:

Question 1.
If sin-1x – cos -1 x = , then the value of x is equal to:

Question 2.
If tan-13 + tan-1 8, then the value of x is equal to:

Question 4.
The value of 2 tan-1 {cosec (tan-1 x ) – tan (cot-1 x)} is equal to:
(a) cot-1x
(b) cot-11/x
(c) tan-1x
(d) tan-11/x
Answer:
(c) tan-1x

Question 2.
Fill in the blanks:

Answer:

Question 4.
Match the column:

Answer:

  1. (b)
  2. (e)
  3. (f)
  4. (a)
  5. (c)
  6. (d)

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *