MP 12th Maths

MP Board Class 12th Maths Solutions Chapter 1 संबंध एवं फलन

MP Board Class 12th Maths Solutions Chapter 1 संबंध एवं फलन

MP Board Class 12th Maths Solutions Chapter 1 संबंध एवं फलन

Ex 1.1

प्रश्न 1.
निर्धारित कीजिए कि क्या निम्नलिखित सम्बन्धों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं –
(i) समुच्चय A = {1, 2, 3,….13, 14} में सम्बन्ध R, इस प्रकार परिभाषित है कि
R= {(x, y): 3x – y = 0}
(ii) प्राकृत संख्याओं के समुच्चय N में R = {(x, y): y = x + 5 तथा x < 4} द्वारा परिभाषित सम्बन्ध R.
(iii) समुच्चय A = {1, 2, 3, 4, 5, 6} में R = {(x, y) : y भाज्य है x से} द्वारा परिभाषित सम्बन्ध R है।
(iv) समस्त पूर्णांकों के समुच्चय z में R = {(x, y): x – y एक पूर्णांक है } द्वारा परिभाषित सम्बन्ध R.
(v) किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित सम्बन्ध R.
(a) R = {(x, y): x तथा y एक ही स्थल पर कार्य करते
(b) R = {(x, y): x तथा ‘एक ही मोहल्ले में रहते हैं।}
(c) R = {(x, y) : x, y से ठीक – ठीक 7 सेमी लम्बा है।}
(d) R = {(x, y): x, y की पत्नी है।।
(e) R = {(x, y): x, y के पिता हैं।}
हल:
(i) दिया है : A = {1, 2, 3,….13, 14}
तथा R = {(x, y) : 3x – y = 0}
(a) y = x रखने पर,
3x – x ≠ 0 [∵x ≠ 0]
इसलिए R स्वतुल्य नहीं है।
(b) x और y को आपस में बदलने पर,
यदि 3x – y = 0, 3y – x ≠ 0
इसलिए R सममित नहीं है।
(c) यदि 3x – y = 0, 3y – z = 0 तब 3y – z ≠ 0.
इसलिए R संक्रामक नहीं है।
अतः R स्वतुल्य सममित तथा संक्रामक नहीं है।

(ii) प्राकृत संख्याओं का समुच्चय A = {1, 2, 3, 4,….}
R = {(x, y): y= x + 5, x < 4}
= {(1, 6), (2, 7), (3, 8)}
स्पष्ट है यह सम्बन्ध स्वतुल्य, सममित तथा संक्रामक नहीं है।

(iii) दिया है :
A = {1, 2, 3, 4, 5, 6 8}
R = {(x, y) : y संख्या x से भाज्य है।
= {1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4) (5, 5), (6, 6)}
(a) (1, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) ϵ R
इसलिए R स्वतुल्य है।

(b) यदि ” संख्या x से भाज्य है तो x संख्या ” से भाज्य नहीं है।
जैसे – (1, 2) ϵ R परन्तु (2, 1) ∉ R
इसलिए R सममित नहीं है।

(c) (1, 2), (2, 4) ϵ R, (1, 4) भी R में है।
इसी प्रकार (1, 3), (3, 6) ϵ R तब (1, 6) ϵ R
इसलिए, R संक्रामक है।
अतः R स्वतुल्य तथा संक्रामक है परन्तु सममित नहीं है।

(iv) A = पूर्णांकों का समुच्चय
{… – 3, – 2, – 1, 0, 1, 2, 3,…}
तथा R = {(x, y) : x – y एक पूर्णांक है}
(a) y = x रखने पर,
x – x = 0, एक पूर्णांक है। एक
इसलिए R स्वतुल्य है।

(b) x – y और y – x दोनों ही पूर्णांक हैं।
इसलिए R सममित नहीं है।

(c) x – y और y – z दोनों ही पूर्णांक हैं तथा x – z भी पूर्णांक हैं।
इसलिए R संक्रामक है।
अतः R स्वतुल्य, सममित तथा संक्रामक है। उत्तर

(v) माना A = किसी विशेष समय पर किसी नगर में रहने – वालों का समुच्चय
(a) R = {(x, y) : x तथा y एक ही स्थान पर कार्य करते हैं।
∴ R स्वतुल्य है, क्योंकि प्रत्येक व्यक्ति उस नगर में उस विशेष समय पर कार्यरत है।
R सममित है, क्योंकि x, y एक ही स्थान पर एक समय पर _ कार्यरत हैं तो y, z भी उसी स्थान पर उस समय कार्यरत हैं।
R संक्रामक है, क्योंकि x, y तथा y, एक नगर में एक ही समय पर कार्यरत हैं तो उस नगर में उसी समय x, z भी कार्यरत
अतः स्वतुल्य, सममित तथा संक्रामक है।

(b) R = {(x, y) : x तथा y एक ही मोहल्ले में रहते हैं।
R स्वतुल्य है, क्योंकि उस स्थान का प्रत्येक व्यक्ति वहीं पर रहता है।
R सममित है, क्योंकि और एक स्थान पर रहते हैं तो उसी स्थान पर y और x भी रहते हैं।
R संक्रामक है, क्योंकि x, y तथा y, z एक स्थान पर रहते हैं तो x, z भी उसी स्थान पर रहते हैं।
अतः R स्वतुल्य, सममित तथा संक्रामक है।

(c) R = {(x, y}): z, y से ठीक – ठीक 7 सेमी लम्बा है}.
R स्वतुल्य नहीं है, क्योंकि कोई भी व्यक्ति अपने से 7 सेमी अधिक लम्बा नहीं हो सकता।
R सममित नहीं है, क्योंकि y, x से ठीक 7 सेमी अधिक लम्बा हो तो x, y से 7 सेमी लम्बा नहीं हो सकता।
R संक्रामक नहीं है, क्योंकि x, y से तथा y, x से ठीक 7 सेमी लम्बे तो x, 2 से ठीक 7 सेमी अधिक लम्बे नहीं हैं।
अतः R स्वतुल्य, सममित तथा संक्रामक में से कोई भी नहीं है।

(d) R = {(x, y}) : x, y की पत्नी है।
R स्वतुल्य नहीं है, क्योंकि x अपनी ही पत्नी नहीं हो सकती हैं।
R सममित नहीं है, क्योंकि यदि x, y की पत्नी है तो y, x की पत्नी नहीं हो सकती।
R संक्रामक नहीं है, क्योंकि यदि x, y की पत्नी है तो y किसी की भी पत्नी नहीं है।
अतः R स्वतुल्य, सममित तथा संक्रामक नहीं है।

(e) R = {(x, y) : x, y के पिता हैं।
R स्वतुल्य नहीं है, क्योंकि x अपना ही पिता नहीं हो सकता।
R सममित नहीं है, क्योंकि x, y का पिता है तो y, x का पिता नहीं हो सकता।
R संक्रामक नहीं है, क्योंकि x, y का y, z का पिता है तो x, z का पिता नही हो सकता।
अतः R स्वतुल्य, सममित तथा संक्रामक नहीं है।

प्रश्न 2.
सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में R = {(a, b):a ≤ b2 }, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित है और न ही संक्रामक है।
हल:
(i) ∵ a ≰ a2, समस्त a ϵ R जैसे  से छोटा नहीं हो सकता है।
अतः R स्वतुल्य नहीं है।
(ii) R सममित भी नहीं है क्योंकि यदि a ≤ b2 तब, b, a2 से छोटा अथवा बराबर नहीं हो सकता है। जैसे 2 < 72 लेकिन 7 ≰ 22
(iii) R न ही संक्रामक क्योंकि
यदि a ≤ b2, b ≤ c2 तब a, c2 से छोटा नहीं है जैसे 5 < 32, 3 < 22 लेकिन 5, 22 से छोटा नहीं है।

प्रश्न 3.
जाँच कीजिए कि क्या समुच्चय {1, 2, 3, 4, 5, 6} में R = {(a, b): b = a + 1} द्वारा परिभाषित संबंध R स्वतुल्य, सममित या संक्रामक है।
हल:
∵ a ≠ a + 1
∴ R स्वतुल्य नहीं है।
R सममित नहीं है क्योंकि यदि b = a + 1, तब a ≠ b + 1
R संक्रामक भी नहीं है क्योंकि यदि b = a + 1, c = b + 1, तब c = (a + 1) + 1 # a + 1

प्रश्न 4.
सिद्ध कीजिए कि R में R= {(a, b): a ≤ b}, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किन्तु सममित नहीं है।
हल:
दिया है R = {(a, b): a ≤ b}
b के स्थान पर a रखने पर,
a ≤ a ⇒ a = a
सत्य है अतः R स्वतुल्य है।
पुनः यदि a ≤ b, लेकिन b ≤ a सत्य नहीं है
जैसे 2 < 3 लेकिन 3 ≮ 2 अतः R सममित नहीं है।
पुनः यदि a ≤ b और b ≤ c तब a ≤ c
जैसे 2 < 5, 5 < 8 ⇒ 2 < 8 इसलिए R संक्रामक है
अतः R स्वतुल्य तथा संक्रामक है किन्तु सममित नहीं है।

प्रश्न 5.
जाँच कीजिए कि क्या R में R= {(a, b): a ≤ b3} द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?
हल:
(i) ∵ a ≤ a3 सत्य नहीं है जैसे
∴ R स्वतुल्य नहीं है।
(ii) यदि a ≤ b3, लेकिन b ≰ a3; जैसे 2 ≤ 93, लेकिन 9 ≰ 23
∴ R सममित नहीं है।
(iii) यदि a ≤ b3 और b ≤ cv लेकिन यह आवश्यक नहीं है कि a,c से छोटा होगा।
∴ R संक्रामक नहीं है।

प्रश्न 6.
सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R={(1, 2), (2, 1)} द्वारा प्रदत्त संबंध R सममित है किंतु न तो स्वतुल्य है और न संक्रामक है।
हल:
(i) (1, 1), (2, 2), (3, 3) ∉ R
∴ R स्वतुल्य नहीं है।
(ii) ∵ (1, 2), (2, 1) ϵ R
∴ R सममित है।
(iii) ∵ (1, 2) और (2, 1) ϵ R, परन्तु (1, 1) ∉ R
∴ R संक्रामक नहीं है।

प्रश्न 7.
सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y): x तथा y में पेंजों की संख्या समान है} द्वारा प्रदत्त सम्बन्ध र एक तुल्यता सम्बन्ध है।
हल:
A = किसी कॉलेज के पुस्तकालय की समस्त पुस्तको का समुच्चय
तथा R = {(x, y}): x तथा y में पेजों की संख्या समान है।
(i) R स्वतुल्य है, क्योंकि बराबर पृष्ठों वाली प्रत्येक पुस्तक में उतने ही पृष्ठ होंगे।
(ii) R सममित है, क्योंकि x, y पुस्तकों में पृष्ठ बराबर हैं तो y,x पुस्तकों में भी पृष्ठ बराबर होंगे।
(iii) R संक्रामक है, क्योंकि x, y तथा y, z पुस्तकों में पृष्ठ बराबर हैं तो x, z पुस्तकों में भी पृष्ठ बराबर होंगे।
अतः R तुल्यता सम्बन्ध है।

प्रश्न 8.
सिद्ध कीजिए कि A = {1, 2, 3, 4, 5} में, R= {(a, b):|a – b| सम है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। प्रमाणित कीजिए कि {1, 3, 5} के सभी अवयव एक दूसरे से संबंधित हैं और समुच्चय {2, 4} के सभी अवयव एक – दूसरे से संबंधित हैं परन्तु {1, 3, 5} का कोई भी अवयव {2, 4} के किसी अवयव से संबंधित नहीं है।
हल:
A = {1, 2, 3, 4, 5) तथा R = {(a, b):|a – b| सम है}
माना अवयव a, समुच्चय A का अवयव है
तब |a – a| = 0 सम है।
∴ R स्वतुल्य है।
यदि |a – b| सम है
तब, |b – a| भी सम होगा।
∴ R सममित है
पुनः a – c = a – b + b – c
यदि |a – b| तथा | b – सम हो तब,
उनका योग |a – b + b – c| भी सम होगा।
a |a – c| सम होगा।
∴ R संक्रामक है
अत: R एक तुल्यता संबंध है।
∵ |1 – 3| = |3 – 1| = 2
|3 – 5| = |5 – 3| = 2
तथा |1 – 5| = |5 – 1| = 4
जो कि सभी सम संख्याएँ हैं
इसलिए {1, 3, 5} के सभी अवयव एक दूसरे से संबंधित हैं।
इसी प्रकार {2, 4} के अवयव भी एक – दूसरे से संबंधित हैं। अब |1 – 2| = 1 जो कि सम संख्या नहीं है।
अतः {1, 3, 5) के अवयव {2, 4} से संबंधित नहीं है।

प्रश्न 9.
सिद्ध कीजिए कि समुच्चय A = {x ϵ z : 0 ≤ x ≤ 12}, में दिए गए निम्नलिखित संबंधों R में से प्रत्येक एक तुल्यता संबंध है :
(i) R = {(a, b): |a – b|, 4 का एक गुणज है}
(ii) R = {(a,b): a = b};
प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।
हल:
दिया है समुच्चय
A = {x ϵ z : 0 ≤ x ≤ 12}
= {0, 1, 2,…12}
(i) R = {(a, b): |a – b, 4 का गुणज है।
(a) a – a = 0 = 4k, जहाँ k = 0 ⇒ (a, a) ϵ R
∴ R स्वतुल्य है।

(b) यदि |a – b| = 4k
तब |b – a| = 4k
⇒ (a, b) तथा (b, a) दोनों R से संबंध है
इसलिए R सममित है।
पुनः a – c = a – b + b – c
जब a – b तथा b – c दोनो के 4 के गुणज है।
तब, a – c भी 4 का गुणज होगा।
⇒ यदि (a, b), (b, c) ϵ R तब, (a – c) ϵ R
इसलिए R,संक्रामक है।
अतः R एक तुल्यता संबंध है।
अतः समुच्चय {1, 5, 9}, 1 से संबंधित है।

(ii) R = {(1, b): a = b}
∴ R = {(0, 0), (1, 1), (2, 2) … (12, 12)}
(a) a = a ⇒ (a, a) ϵ R
∴ R एक स्वतुल्य है।
(b) पुनः यदि (a, b) ϵ R
⇒ a = b ⇒ b = a, तब (b, a) ϵ R
∴ R सममित है।
पुनः यदि (a, b) ϵ R तथा (b, c) ϵ R
⇒ a = b = c
इसलिए a = c ⇒ (a, c) ϵ R
∴ R संक्रामक है।
अत: R एक तुल्यता संबंध R जो प्रत्येक दशा में 1 से संबंधित है।

प्रश्न 10.
ऐसे सम्बन्ध का उदाहरण दीजिए, जो
(i) सममित हो परन्तु न तो स्वतुल्य हो और न संक्रामक हो।
(ii) संक्रामक हो परन्तु न तो स्वतुल्य हो और न सममित हो।
(iii) स्वतुल्य तथा सममित हो किन्तु संक्रामक न हो।
(iv) स्वतुल्य तथा संक्रामक हो किन्तु सममित न हो।
(v) सममित तथा संक्रामक हो किन्तु स्वतुल्य न हो।
हल:
(i) माना A = एक समतल में सरल रेखाओं का समुच्चय तथा R = {(a, b): a, b पर लम्ब है} रेखा a, b पर लम्ब है तो b रेखा a पर लम्ब है।
(1) R सममित सम्बन्ध है।
(2) R स्वतुल्य नहीं है, क्योंकि रेखा a अपने आप ही लम्ब नहीं हो सकती है।
(3) R संक्रामक नहीं है, यदि रेखा b पर लम्ब है, b रेखा c पर लम्ब है परन्तु a रेखा c पर लम्ब नहीं है।

(ii) माना A = वास्तविक संख्याओं का समुच्चय – तथा R = {(a, b): a > b}
(1) R संक्रामक है, यदि a > b और b > c ⇒ a > c
(2) R स्वतुल्य नहीं है, यदि a अपने आप से बड़ी संख्या नहीं है।
(3) R सममित नहीं है, यदि a> b तो b,a से बड़ा नहीं है।

(iii) माना A = {1, 2, 3} तथा R = {(a, b): a + b ≤ 4}.
= {(1, 1), (1, 2), (1, 3),(2, 1),(2, 2), (3, 1)
(1) R स्वतुल्य है, यदि (1, 1), (2, 2) ϵ R.
(2) R सममित है, यदि (1, 2), (2, 1) ϵ R (1, 3), (3, 1) ϵ R
(3) R संक्रामक नहीं है, यदि (2, 1) ϵ R, (1, 3) ϵ R किन्तु (2, 3) ϵ R.

(iv) माना A = {1, 2, 3}
तथा R = {(a, b): a < b}
= {(1, 1), (2, 3), (3, 3), (1, 2), (1, 3),(2, 3)}
(1) R स्वतुल्य है, यदि (1, 1), (2, 2), (3, 3) ϵ R
(2) R संक्रामक है, यदि (1, 2), (2, 3) ϵ R ⇒ (1, 3) ϵ R
(3) R सममित नहीं है, यदि a < b परन्तु b, a से कम नहीं है।

(v) माना A = {1, 2, 3}
तथा R = {(1, b): 0 < |a – b| ≤ 2}
= {(1, 2), (1, 3), (2, 3), (3, 1), (2, 1), (3, 2)}
(1) R सममित है, यदि (1, 2) ϵ R, (2, 1) ϵ R इसी प्रकार (1, 3) ϵ R, (3, 1) ϵ R
(2) R संक्रामक है, यदि (1, 2), (2, 3) ϵ R c (1, 3) ϵ R
(3) R स्वतुल्य नहीं है, यदि (1, 1), (2, 2), (3, 3) R में नहीं है।

प्रश्न 11.
सिद्ध कीजिए कि किसी समतल में स्थित बिन्दुओं में R : {{P, Q) : बिन्दु P की मूल बिन्दु से दूरी, बिन्दु Q की मूल बिन्दु से दूरी के समान है} द्वारा प्रदत्त सम्बन्ध र एक तुल्यता सम्बन्ध है। पुनः सिद्ध कीजिए कि बिन्दु P ≠ (0, 0) से सम्बन्धित सभी बिन्दुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केन्द्र मूलबिन्दु पर
हल:
माना A = समतल में बिन्दुओं का समुच्चय
तथा R = {(P, Q): मूल बिन्दु से P तथा Q की दूरी समान है}
= {(P, Q) : OP = OQ}
(i) R स्वतुल्य है, क्योंकि OP अपने ही बराबर है।
(ii) R सममित है, यदि OP = OQ ⇒ OQ =OP
(iii) R संक्रामक है, यदि OP = OQ, OQ = QR ⇒ OP = OR
अतः R तुल्यता सम्बन्ध है।
माना OP =K ⇒ बिन्दु P एक वृत्त पर रहता है जो O से K दूरी पर है।

प्रश्न 12.
सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय A में, R = {(T1, T2) : T1, T2 के समरूप है} द्वारा परिभाषित सम्बन्ध र एक तुल्यता सम्बन्ध है। भुजाओं 3, 4, 5 वाले समकोण त्रिभुज T1, भुजाओं 5, 12, 13 वाले समकोण त्रिभुज T2 तथा भुजाओं 6, 8, 10 वाले समकोण त्रिभुज T3 पर विचार कीजिए। T1, T2 और T3 में से कौन – से त्रिभुज परस्पर सम्बन्धित हैं?
हल:
माना A = एक समतल में त्रिभुजों का समुच्चय
तथा R = {(T1, T2) : T1 और T2 समरूप त्रिभुज है।
(i) (a) R स्वतुल्य है, क्योंकि प्रत्येक त्रिभुज अपने समरूप है।
(b) R सममित है, यदि त्रिभुज T1, T2 के समरूप हैं तो त्रिभुज T2, T1 के भी समरूप हैं।
(c) R संक्रामक है, यदि त्रिभुज T1, T2 और त्रिभुज T,,T, समरूप हैं तो त्रिभुज T2, T3 भी समरूप हैं।
अतः R तुल्यता सम्बन्ध है।

(ii) त्रिभुज T1 की भुजाएँ 3, 4, 5 हैं त्रिभुज T2 की भुजाएँ 5, 12, 13 हैं तथा त्रिभुज T, की भुजाएँ 6, 8, 10 हैं।
::त्रिभुज T1 तथा T3 की भुजाएँ समानुपाती हैं। इसलिए यह समरूप है। अतः त्रिभुज T1तथा T3 आपस में सम्बन्धित है।

प्रश्न 13.
सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय A में, R = {(P1, P2) : P1 तथा P2 की भुजाओं की संख्या समान है} प्रकार से परिभाषित संबंध R एक तुल्यता संबंध है। 3, 4 और 5 लम्बाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय A के सभी अवयवों का समुच्चय ज्ञात कीजिए।
हल:
माना बहुभुज P में भुजाओं की संख्या n है।
R = {(P1, P2) : P1 तथा P2 भुजाओं वाले बहुभुज हैं}
(i) ∴ प्रत्येक बहुभुज की n भुजाएँ हैं
∴ R स्वतुल्य है।

(ii) यदि P1 तथा P2 n भुजाओं वाले बहुभुज हों तब P2 तथा P1 भी n भुजाओं वाले बहुभुज होंगे।
∴ R सममित है।

(iii) माना P1, P2 तथा P3 n भुजाओं वाले बहुभुज हैं
तब P1 तथा P2 भी n भुजाओं वाले बहुभुज हैं।
∴ R संक्रामक है।
अतः R एक तुल्यता संबंध है तथा समुच्चय A एक ही में स्थित सभी त्रिभुजों का समुच्चय

प्रश्न 14.
मान लीजिए कि XY – तल में स्थित समस्त रेखाओं का समुच्चय L है और L में R = {(L1, L2) : L1 समान्तर है L2 के} द्वारा परिभाषित संबंध R है। सिद्ध कीजिए कि R एक तुल्यता संबंध है। रेखा y = 2x + 4 से संबंधित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।
हल:
L = XY – तल में स्थित सभी रेखाओं का समुच्चय
R = {(L1, L2) : L1 ||L1
∵ L1 ||L1
∴ R स्वतुल्य है।
पुनः L1|| L2 ⇒ L2|| L1
∴ R सममित है ।
माना L1 || L2 तथा L2 || L3
⇒ L1 || L3
∴ R एक संक्रामक है।
अतः R एक तुल्यता संबंध है।
रेखा y = 2x + 4 से संबंधित समस्त रेखाओं का समुच्चय
y=2x + C, C ϵ R

प्रश्न 15,
मान लीजिए कि समुच्चय {1, 2, 3, 4} में, R={(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)} द्वारा – परिभाषित सम्बन्ध R है। निम्नलिखित में से सही उत्तर चुनिए।
(A) R स्वतुल्य तथा सममित है किन्तु संक्रामक नहीं है।
(B) R स्वतुल्य तथा संक्रामक है किन्तु सममित नहीं है।
(C) R सममित तथा संक्रामक है किन्तु स्वतुल्य नहीं है।
(D) R एक तुल्यता सम्बन्ध है।
हल:
माना A = {(1, 2, 3, 4}
तथा R = {(1, 2),(2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}
(i) R स्वतुल्य है, यदि (1, 1), (2, 2), (3, 3),(4, 4) ϵ R
(ii) R सममित नहीं है, यदि (1, 2) ϵ R परन्तु (2, 1) ϵ R
(iii) R संक्रामक है, यदि (1 ,3) ϵ R, (3, 2) R तथा (1, 2) ϵ R
अतः R स्वतुल्य, संक्रामक है परन्तु सममित नहीं है।
अतः विकल्प (B) सही है।

प्रश्न 16.
मान लीजिए कि समुच्चय N में, R = {(a, b): a = b – 2, b > 6} द्वारा प्रदत्त सम्बन्ध R है। निम्नलिखित में से सही उत्तर चुनिए-
(A) (2, 4) ϵ R
(B) (3, 8) ϵ R
(C) (6, 8) ϵ R
(D) (8, 7) ϵ R
हल:
माना A = N, प्राकृत संख्याओं का समुच्चय है।
तथा R = {(a, b): a = b – 2, b > 6}
a = b – 2, b > 6
b= 8 रखने पर, a = 8 – 2 = 6 ⇒ (6, 8) ϵ R
अतः विकल्प (C) सही है।

Ex 1.2

प्रश्न 1.
सिद्ध कीजिए कि f(x) =  द्वारा परिभाषित फलन f : R* → R* एकैकी तथा आच्छादक है, जहाँ R* सभी ऋणेत्तर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत R* को N से बदल दिया जाए, जब कि सहप्रांत पूर्ववत R. ही रहे, तो भी क्या यह परिणाम सत्य होगा?
हल:
दिया है फलन f(x) =
यदि f(x1) = f(x2)

इसलिए f आच्छादक है।
अतः f : R* →R*, एकैकी व आच्छादक है।
यदि R* को N से बदल दिया जाए तथा सहप्रांत (co – domain) पूर्वत: R* है तब,
f : N →R*
माना f(n1) = f(n2)

प्रश्न 2.
निम्नलिखित फलनों की एकैक (Injective) तथा आच्छादी (Surjective) गुणों की जाँच कीजिए :
(i) f (x) = x2 द्वारा प्रदत्त f: N →N फलन है।
(ii) f (x) = x2 द्वारा प्रदत्त f: Z → Z फलन है।
(iii) f (x) = x2 द्वारा प्रदत्त f: R → R फलन है।
(iv) f (x) = x3 द्वारा प्रदत्त f: N →N फलन है।
(v) f(x) = x3 द्वारा प्रदत्त f: Z → Z फलन है।
हल
(i) यहाँ f (x) = x2 और f : N → N
(a) f(x1) = f(x2) ⇒ x21 = x22 ⇒ x1 = x2, x2 % N
∴ f एकैकी है।
(b) परन्तु सहप्रान्त में ऐसे अवयव हैं जो प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है। जैसे, माना 3 सहप्रान्त में है तो 3 प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है। अतः । एकैकी है परन्तु आच्छादक नहीं है।

(ii) f: Z → Z, जबकि f(x) = x2
(a) f(-1) = f(1) = 1 ⇒ -1 और 1 का प्रतिबिम्ब भिन्न नहीं है।
∴ f एकैकी नहीं है।
(b) सहप्रान्त में ऐसे अवयव हैं जो प्रान्त के किसी अवयव में प्रतिबिम्ब नहीं हैं। जैसे-3 सहप्रान्त के, 3 प्रान्त के किसी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अतः एकैकी नहीं है और न ही आच्छादक है।

(iii) f: R →R, यदि f(x) = x2
(a) (-1)2 = 1 ⇒ f(-1) = f(1)
अतः -1 और -1 का प्रतिबिम्ब 1 है।
∴ एकैकी नहीं है।
(b) -2 सहप्रान्त में है परन्तु यह प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
अतः f आच्छादक नहीं है।
∴ f तो एकैकी है और न ही आच्छादक है।

(iv) f: N → N, यदि f(x) = x3
(a) f(x1) = f(x2) ⇒ x13 = x23 ⇒ x1 = x2
प्रत्येक x % N का एक प्रतिबिम्ब है।
∴ f एकैकी है।

(b) सहप्रान्त के बहुत से ऐसे अवयव हैं जिनमें प्रान्त के किसी भी अवयव के प्रतिबिम्ब नहीं हैं। जैसे-2, 3, 4, …… ये प्रान्त के किसी भी अवयव के प्रतिबिम्ब नहीं हैं।
∴ f आच्छादक नहीं है।
अतः f एकैकी है, परन्तु आच्छादक नहीं है।

(v) f: Z → Z, यदि f(x) = x3
(a) f(x1) = f(x2) ⇒ x13 = x23 ⇒ x1 = x2
∴ f एकैकी है।

(b) f के सहप्रान्त में बहुत से अवयव हैं जो प्रान्त में किसी भी अवयव का प्रतिबिम्ब नहीं हैं। जैसे–2, 3,
∴ f आच्छादक नहीं है।
अतः f एकैकी है परन्तु आच्छादक नहीं है।

प्रश्न 3.
सिद्ध कीजिए कि f(x) = [x] द्वारा प्रदत्त महत्तम पूर्णांक फलन f : R → R* , न तो एकैकी है और न आच्छादक है, जहाँ [x], x से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।
हल
फलन f : R → R इस प्रकार परिभाषित है कि f(x) = [x]
यदि x = 1.1 तो f(1.1) = 1 (∵ 1, 1.1 कम पूर्णांक है)
तथा f(1.3) = 1
∵ 1.1 व 1.3 के प्रतिबिम्ब बराबर हैं।
∴ f एकैकी नहीं है।
x % R के लिए प्रान्त (domain) की प्रत्येक अवयव का सहडोमेन (Co-domain) में प्रतिबिम्ब होगा परन्तु सह प्रान्त के प्रत्येक अवयव का पूर्व प्रतिबिम्ब (Pre image), प्रान्त में नहीं होगा।
इसलिए । आच्छादक नहीं है।
अतः f न तो एकैकी है और न ही आच्छादक है।

प्रश्न 4.
सिद्ध कीजिए कि f(x) = |x| द्वारा प्रदत्त मापांक फलन f : R → R, न तो एकैकी है और न आच्छादक है, जहाँ |x| बराबर x, यदि धन या शून्य है तथा| |x| बराबर -x, यदि x ऋण है।
हल
दिया है
f : R → R तथा f(x) = |x|
यदि x = 1 तथा f(1) = 1
यदि x = -1 तब f(-1) = 1
∵ 1 और -1 दोनों का प्रतिबिम्ब 1 है।
∴ f एकैकी नहीं है।
∵ सहडोमेन (Co-domain) के ऋणात्मक अवयव का कोई भी पूर्व प्रतिबिम्ब (Pre image) डोमेन (domain) में नहीं है।
∴ f आच्छादक नहीं है।
अतः f न तो एकैकी और न ही आच्छादक है।

प्रश्न 5.
सिद्ध कीजिए कि

द्वारा प्रदत्त चिन्ह फलन न तो एकैकी है और न आच्छादक है।
हल:
f : R → R इस प्रकार परिभाषित है कि
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन Ex 1.2 img 3
∴ f(1) = 1 तथा f(2) = 1
∵ 1 व 2 का प्रतिबिम्ब समान (1) है।
पुनः x > 0 के लिए
f(x1) = f(x2) = 1 जहाँ x1 ≠ x2
इसी प्रकार x < 0 के लिए
f(x1) = f(x2) = -1 जहाँ x1 ≠ x2
∴ f एकैकी नहीं है।
सहप्रान्त (Co-domain) के अवयव -1, 0, 1 का पूर्व प्रतिबिम्ब (Pre image) डोमेन (domain) में नहीं है।
∴ f आच्छादक नहीं है।
अतः f न तो एकैकी है और न ही आच्छादक है।

प्रश्न 6.
मान लीजिए कि A = {1, 2, 3}, B = {4, 5, 6, 7} तथा f = {(1, 4),(2, 5),(3, 6)}A से B तक एक फलन है। सिद्ध कीजिए कि f एकैकी है।
हल
A = {1, 2, 3}, B = {4, 5, 6, 7}
तथा f = {(1, 4),(2, 5), (3, 6)}
चित्र के अनुसार A के प्रत्येक अवयव का प्रतिबिम्ब B में है।
इसलिए f एकैकी है।

प्रश्न 7.
निम्नलिखित में से प्रत्येक स्थिति में बतलाइए कि क्या दिए हुए फलन एकैकी, आच्छादक अथवा एकैकी आच्छादी (bijective) हैं। अपने उत्तर का औचित्य भी बतलाइए।
(i) f(x) = 3 – 4x द्वारा परिभाषित फलन f : R → R है।
(ii) f(x) = 1+ x2 द्वारा परिभाषित फलन f: R →R है।
हल
(i) यहाँ f: R → R, यदि f(x) = 3 – 4x
(a) f(x1) = f(x2) ⇒ 3 – 4x1 = 3 – 4x2 = x1 ⇒ x2
अत: f एकैकी है।
(b) f(x) = y = 3 – 4x

y के प्रत्येक मान के लिए एक ही मान है।
सहप्रान्त में प्रत्येक प्रान्त के एक अवयव का प्रतिबिम्ब है।
∴ f आच्छादक है।
अतः f एकैकी तथा आच्छादक है।

(ii) f : R → R, यदि f(x) = 1 + x2
(a) f(-1) = 1 + 1 = 2 f(1) = 1 + 1 = 2
f(-1) = f(1)
-1 और 1 दोनों का एक प्रतिबिम्ब है।
∴ f एकैकी नहीं है।..
(b) सहप्रान्त की कोई भी ऋणात्मक संख्या प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अतः एकैकी तथा आच्छादक नहीं है।

प्रश्न 8.
मान लीजिए कि A तथा B दो समुच्चय हैं। सिद्ध कीजिए कि f: A × B → B × A, इस प्रकार हैं कि f (a, b) = (b, a) एक एकैकी आच्छादी (bijective) फलन है।
उत्तर
हल
यहाँ f = (A × B)→ (B × A), यदि f(a, b) = (b, a)
(a) f(a1, b1) = f(a2, b2) ⇒ (b1, a1) = (b2, a2)
∴ b1 = b2, और a1 = a2
अत: f एकैकी है।

(b) सहप्रान्त का सदस्य (p, q) प्रान्त में (g, p) का प्रतिबिम्ब है।
∴ f आच्छादक है।
अतः f एकैकी तथा आच्छादक है।

प्रश्न 9.
मान लीजिए कि समस्त n % N के लिए,
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन Ex 1.2 img 5
द्वारा परिभाषित एक फलन f: N → N है। बतलाइए कि क्या फलन f एकैकी आच्छादी है। अपने उत्तर का औचित्य भी बतलाइए।
हल
फलन f: N → N इस प्रकार परिभाषित है कि
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन Ex 1.2 img 6
∵ प्रान्त में स्थित अवयव 1 व 2 के प्रतिबिम्ब सहप्रान्त में एक ‘1’ ही है।
∴ f एकैक नहीं है।
इसलिए f आच्छादी नहीं है।
पुनः सह प्रान्त के प्रत्येक अवयव की Pre image प्रान्त में स्थित है।
इसलिए f आच्छादक है।
अतः f एकैक नहीं है परन्तु आच्छादक है। इसलिए f एकैकी आच्छादती (bijective) नहीं है।

प्रश्न 10.
मान लीजिए कि A = R – {3} तथा B = R – {1} है f(x) =  द्वारा परिभाषित फलन f: A → B पर विचार कीजिए। क्या एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
हल
f: A → B, जहाँ A = R – {3}, B = R – {1},
f इस प्रकार परिभाषित है कि

⇒ y के प्रत्येक मान के लिए प्रांत (domain) में Pre image x =  स्थित है।
इसलिए f आच्छादक है।
अतः f एकैक तथा आच्छादक है।

प्रश्न 11.
मान लीजिए f: R → R; f (x) = x4 द्वारा परिभाषित है। सही उत्तर का चयन कीजिए।
(A) f एकैकी आच्छादक है। (B) f बहुएक आच्छादक है
(C) f एकैकी है किन्तु आच्छादक नहीं है, (D) f न तो एकैकी है और न आच्छादक है।
हल
यहाँ f: R → R, यदि f (x) = x4
(a) f(-1) = (-1)4 = 1, f(1) = 14 = 1
f(-1) = f(1)
-1 और 1 का प्रतिबिम्ब 1 है।
∴ f एकैकी नहीं है।

(b) सहप्रान्त का -1 प्रान्त के किसी भी सदस्य का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अत: f एकैकी और आच्छादक नहीं है।
अतः विकल्प (D) सही है।

प्रश्न 12.
मान लीजिए कि f (x) = 3x द्वारा परिभाषित फलन f: R → R है। सही उत्तर चुनिए :
(A) f एकैकी आच्छादक है
(B) f बहुएक आच्छादक है
(C) f एकैकी है परन्तु आच्छादक नहीं है
(D) f न तो एकैकी है और न आच्छादक है
हल
यहाँ f :R → R, f(x) = 3x द्वारा परिभाषित किया गया है।
(a) f(x1) = f(x2) = 3x1 = 3x2
∴ x1 = x2
अतः f एकैकी है।

(b) माना y = 3x

y के प्रत्येक मान के लिए x का मान निम्न है।
∴ आच्छादक है।
अतः f एकैकी तथा आच्छादक है।
अतः विकल्प (A) सही है।

Ex 1.3

प्रश्न 1.
मान लीजिए कि f:{1, 3, 4} → {1, 2, 5} तथा g:{1, 2, 5} → {1, 3}, f = {(1, 2), (3, 5), (4, 1)} तथा g = {(1, 3), (2, 3), (5, 1)} द्वारा प्रदत्त है।g of ज्ञात कीजिए।
हल:
दिया है:
f = {(1, 2), (3, 5)(4, 1)}
तथा g = {(1, 3),(2, 3), (5, 1)}
∴ gof(1) = g (f (1))
= g(2)
= 3
gof(3) = g(f (3))
= g(5)
= 1
तथा g of(4) = g(f(4))
= g(1)
= 3
∴ gof = {(1, 3), (3, 1), (4, 3)}

प्रश्न 2.
मान लीजिए कि f,g तथा h, R से R तक दिए फलन हैं। सिद्ध कीजिए कि
(f + g)oh = foh + goh
(f.g)oh = (foh).(goh)
हल:
दिया है:
f: R → R, g: R → R, h: R → R
∴ (fog)oh(x) = (g + g)(h (x))
= g(h (x)) + g (h (x))
= (foh) (x) + (goh) (x)
= (foh + goh) (x)
∴ f(f + g) oh = foh + goh
पुनः (f.g) oh(x) = (f.g)(h (x))
= f (h (x)).g(h (x))
= (foh)x (goh) (x)
= [(goh) (goh)](x)
∴ (f.g)oh = (foh) (goh)

प्रश्न 3.
gof तथा fog ज्ञात कीजिए, यदि
(i) f(x) = |x| तथा g(x) = |5x – 2|
(ii) f(x) = 8x3 तथा g(x) = x1/3
हल:
(i) ∵ f(x) = |x|
तथा g(x) = [5x – 2||
∴ gof(x) = g[f (x)]
= g[/x]
= |5 |x – 2|
तथा fog (x) = f|g(x)|
= f (|5x – 2|)
= |5x – 2|
= |5x – 2|

(ii) ∵ f(x) = 8x3
तथा g(x) = x1/3
∴ gof(x) = g[f (x)]
= g(8x3)
= (8x3)1/3
= 2x
तथा fog(x) = f[g(x)]
= f(x1/3)
= 8(x1/3)3
= 8x

प्रश्न 4.
यदि f(x) = तो सिद्ध कीजिए कि सभी x ≠  के लिए f0f(x) = x है। का प्रतिलोम फलन क्या है?
हल:
दिया है :

⇒ y (6x – 4) = 4x + 3
⇒ 6xy – 4y = 4x + 3
⇒ 6xy – 4x = 4y + 3
⇒ 6xy – 4x = 4y + 3

अतः f का प्रतिलोम f ही है।

प्रश्न 5.
कारण सहित बतलाइए कि क्या निम्नलिखित फलनों के प्रतिलोम हैं-
(i) f:{1, 2, 3, 4} → {10} जहाँ
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
(ii) g : {5, 6, 7, 8} → {1, 2, 3, 4} जहाँ
g = {(5, 4), (6, 3), (7, 4),(8, 2}}
(iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} जहाँ
h = {(2, 7), (3, 9), (4, 11), (5, 13)}
हल:
(i) दिया है : f :{1, 2, 3, 4} → {10) जहाँ
f = {(1, 10),(2, 10), (3, 10),(4, 10)}
∵ f(1) = 10, f(2) = 10, f(3) = 10, f(4) = 10
⇒ f(1) = f(2) = f(3) = f(4)
∴ f एकैक नहीं है।
अतः दिए गये फलन का प्रतिलोम नहीं है।

(ii) g = {5, 6,7, 8} → 1, 2, 3, 4) जहाँ
g = {(5, 4), (6, 3),(7, 4), (8, 2)}
∴ g (5) = 4 तथा g (7) = 4
∵ (5) = g (7) = 4
∴ एकैक नहीं है।
अतः दिये गये फलन का प्रतिलोम नहीं है।

(iii) h : {2, 3, 4, 5} → {7, 11, 13} जहाँ
h = {(2, 7),(3, 9),(4, 11), (5, 13)}
∴ h (2) = 7, h (3) = 9, h (4) = 11 तथा h (5) = 13
∴ h एकैक है
अतः दिए गए फलन (h) का प्रतिलोम है।

प्रश्न 6.
सिद्ध कीजिए कि f:[- 1, 1] → R, f(x) =  द्वारा प्रदत्त फलन एकैकी है। फलन f: [- 1, 1] → (f का परिसर), का प्रतिलोम फलन ज्ञात कीजिए।
हल:
यदि f(x1) = f(x2) तब,

प्रश्न 7.
f(x) = 4x + 3 द्वारा प्रदत्त फलन f : R → R पर विचार कीजिए। सिद्ध कीजिए कि f व्युत्क्रमणीय है। का प्रतिलोम फलन ज्ञात कीजिए।
हल:
फलन f : R → R निम्न द्वारा परिभाषित है
f(x) = 4x + 3
यदि f(x1) = f(x2)
⇒ 4x1 + 3 = 4x2 + 3
⇒ x1 = x2
∴ f एकैक है।
तथा माना f(x) = y = 4x + 3
⇒ 4x = y – 3

सहप्रान्त (Co – domain) प्रत्येक अवयव yE R का प्रान्त (do main) में पूर्व प्रतिबिम्ब (pre image) है।
∴ f आच्छादक (onto) है
अतः f एकैक और आच्छादक है।
अत: f व्युत्क्रमणीय है।
∴ f का प्रतिलोम फलन
f-1 (y) = g(y)

प्रश्न 8.
f(x) = x2 + 4 द्वारा प्रदत्त फलन f : R → [4, ∞) पर विचार कीजिए। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f का प्रतिलोम f-1, f-1(y) = , द्वारा प्राप्त होता है, जहाँ R सभी ऋणेत्तर वास्तविक संख्याओं का समुच्चय है।
हल:
यदि f (x1) = f(x2)
⇒ x12 + 4 = x12 + 4
⇒ x12 = x12 = x1 = x2
( ∵ x ϵ R+
∴ x > 0)
∴ f एकैक है।
माना y = f(x) = x2 + 4
= x2 + 4 = y
x2 = y – 4 = x = ±
लेकिन x धनात्मक है।
∴ x =
∴ f आच्छादक है।
अतः फलन f व्युत्क्रमणीय है।
∴ f का प्रतिलोम फलन
f-1(y) = g(y)
= , y ≥ 4
∀ y ≥ 4, 8 (y) एक धनात्मक मान है।
अतः f का प्रतिलोम फलन =

प्रश्न 9.
f(x) = 9x2 + 6x – 5 द्वारा प्रदत्त फलन f: R → [ – 5, ∞) पर विचार कीजिए। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f-1 =  है।
हल:
दिया है : f(x) = 9x2 + 6x – 5 तथा f: R → [ – 5, ∞)
माना y = 9x2 + 6x – 5
= (3x + 1)2 – 6
⇒ y + 6 = (3x + 1)2 ⇒ 3x + 1 =

प्रश्न 10.
मान लीजिए कि f: x → y व्युत्क्रमणीय फलन है। सिद्ध कीजिए कि f का प्रतिलोम फलन अद्वितीय (unique) है।
हल:
∵ यदि f एक व्युत्क्रमणीय है।
∴ gof (x) = Ix और fog (y) = Iy
⇒ f एकैक तथा आच्छादक है।
माना g1 व g2, f के दो प्रतिलोम फलन हैं।
∴ fog1 (y) = Iy तथा g0g2(y) = Iy
Iy दिए गये फलन f के लिए अद्वितीय है
∴ g1(9) = g2 (y) ⇒ f एकैक और आच्छादक है
अतः f का प्रतिलोम फलन अद्वितीय है।

प्रश्न 11.
f: {1, 2, 3} → {a, b, c}, f(1) = a, f(2) = b तथा f(3) = c द्वारा प्रदत्त फलन पर विचार कीजए। f-1 ज्ञात कीजिए और सिद्ध कीजिए कि (f-1)-1 = f है।
हल:
दिया है :
f: {1, 2, 3} → a, b, d
तथा f(1) = a, f(2) = b, f (3) = c
माना x = {1, 2, 3} तथा y = {a, b, c}
इसलिए f: X → Y
∴ f-1 : Y → X
= f-1(a) = 1, f-1(b) = 2, f-1(c) = 3
इस फलन का प्रतिलोम फलन हम इस प्रकार से भी लिख सकते हैं
(f-1)-1 : x → y
⇒ (f-1)-1(1) = a, (f-1)-1
(2) = b, (f-1)-1(3) = c
इसलिए,
f: x → y
f(1) = a, f(2) = b, f(3) = c
अतः (f-1)-1 = f

प्रश्न 12.
मान लीजिए कि f:x → Y एक व्युत्क्रमणीय फलन है सिद्ध कीजिए कि f-1 का प्रतिलोम f, है अर्थात् (f-1)-1 = f है।
हल:
f:x → Y एक व्युत्क्रमणीय फलन है।
∴ f एकैक तथा आच्छादक है।
⇒ g: y → x, जहाँ भी एकैक और आच्छादक है
∴ gof (x) = Ix तथा fog (y) = Iy
⇒ g = f
अतः f-1 o(f-1)-1 = I
fo[f-1 o(f-1)-1] = foI
⇒ (f of-1) o(f-1)-1 = f
Io(f-1)-1 = f
⇒ (f-1)-1 = f

प्रश्न 13.
यदि f :R → R, f(x) = (3 – x3)1/3, द्वारा प्रदत्त है तो fof(x) बराबर है.
(A) x1/3
(B) x3
(C) x
(D) (3 – x3)
हल:
दिया है : f(x) = (3 – x3)1/3 तथा f: R → R
∴ fof(x) = f[f(x)] = [[(3 – x2)1/3]
= [3 – {(3 – x3 )1/3}3}]1/3
= [3 – (3 – x3)]1/3 = x
अतः विकल्प (C) सही है।

Ex 1.4

प्रश्न 1.
निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित प्रत्येक संक्रिया से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
(i) Z+ में, a * b = a – b द्वारा परिभाषित संक्रिया
(ii) Z+ में, a* b = ab द्वारा परिभाषित संक्रिया
(iii) R में, संक्रिया *, a* b = ab2 द्वारा परिभाषित
(iv) Z+ में, संक्रिया *, a* b = |a – b| द्वारा परिभाषित
(v) Z+ में, संक्रिया *, a* b = a द्वारा परिभाषित
हल:
(i) Z+ में, a* b = a – b द्वारा परिभाषित संक्रिया है
यदि a > b, a * b = a – b ϵ Z+
परन्तु यदि a < b, a * b = a – b < 0, Z+ में नहीं है।
अत:* संक्रिया द्विआधारी संक्रिया नहीं है।

(ii) Z+ पर * संक्रिया, a * b = ab द्वारा परिभाषित है।
यदि a, b ϵ Z+ ⇒ a और b दोनों धनात्मक हैं।
a * b = ab भी धनात्मक है।
ab ϵ Z+
अतः यह संक्रिया द्विआधारी है।

(iii) R पर * संक्रिया a* b = ab+ द्वारा परिभाषित है।
यदि a, b ϵ R, ab2 भी R* में है।
अतः यह संक्रिया द्विआधारी है।

(iv) Z+ पर * संक्रिया a * b = |a – b| द्वारा परिभाषित है।
यदि a, b ϵ Z+ , |a – b | ϵ Z+
अंत: यह संक्रिया द्विआधारी है।

(v) Z+ पर * संक्रिया a* b = a द्वारा परिभाषित है।
यदि a, b ϵ Z+, ∴ a * b = a ϵ Z+
अत: यह संक्रिया द्विआधारी है।

प्रश्न 2.
निम्नलिखित परिभाषित प्रत्येक द्विआधारी संक्रिया के लिए निर्धारित कीजिए कि क्या द्वि आधारी क्रमविनिमेय है तथा क्या साहचर्य है।
(i) Z में, a * b = a – b द्वारा परिभाषित
(ii) Q में, a * b = ab + 1 द्वारा परिभाषित
(iii) Q में, a * b =  द्वारा परिभाषित
(iv) Z+ में, a * b = 2ab द्वारा परिभाषित
(v) Z+ में, a* b = ab द्वारा परिभाषित
(vi) R – { – 1} में, a* b =  द्वारा परिभाषित
हल:
(i) Z पर संक्रिया a* b = a – b द्वारा परिभाषित है।
(a) यदि a * b = a – b और b * a = b – a
परन्तु a – b ≠ b – a ⇒ a* b + b * a
∴ यह संक्रिया क्रमविनिमेय नहीं है।

(b) यदि a * (b * c) = a * (b – c) = a * (b – c)
a – (b – c) = a – b + c
(a * b) * c = (a – b) * c = a – b – c
स्पष्ट है कि a * (b * c) (a * b) * c
∴ संक्रिया साहचर्य नहीं है। अतः संक्रिया न तो क्रमविनिमेय है और न ही साहचर्य है।

(ii) Q पर * संक्रिया, a * b = ab + 1 से परिभाषित है।
(a) a * b = ab + 1, b * a = ba + 1 = ab + 1
∴ a * b = b * a
∴ यह संक्रिया क्रमविनिमेय द्विआधारी है।

(b) यदि a * (b * c) = a * (bc + 1) = a (bc + 1) + 1
= abc + a + 1
(a * b) * c= (ab + 1) * c =(ab + 1)c + 1
= abc + c + 1
∴ (a * b) * c ≠ a + (b + c)
∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है। अतः यह संक्रिया क्रमविनिमेय है परन्तु साहचर्य नहीं है।

(iii) Q पर * संक्रिया, a * b =  द्वारा परिभाषित है।

∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया है।
अतः यह संक्रिया क्रमविनिमेय और साहचर्य दोनों हैं।

(iv) Z+ पर * संक्रिया a* b = 2ab से परिभाषित है।
(a) ∴ a * b = 2ab, b * a = 2ba = 2ab
⇒ a * b = b * a
अतः संक्रिया क्रमविनिमेय संक्रिया है।

(b) a * (b * c) = a * 2bc = aa.2bc
(a * b) * c = 2ab * c = 22ab.c
∴ a * (b * c) ≠ * (a * b) *c
∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है। अतः यह संक्रिया क्रमविनिमेय है परन्तु साहचर्य नहीं है।

(v) Z+ पर * संक्रिया, a * b = ab से परिभाषित है।
(a) a * b = ab, b * a = ba
∴ a * b + b* a
अत: यह संक्रिया क्रमविनिमेय नहीं है।
(b) a * (b * c)=a * bc = a(bc)
(a * b) * c = ad * c = a(b)c = abc
∴ (a * b) * c * a * (b * c)
∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है।
अत: यह संक्रिया न तो क्रमविनिमेय है और न ही साहचर्य

(vi) R – {-1} पर * संक्रिया, a * b =  द्वारा परिभाषित है।

∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है।
अत: यह संक्रिया क्रमविनिमेय है और न ही साहचर्य है।

प्रश्न 3.
समुच्चय {1, 2, 3, 4,5} में a ^ b= निम्नतम {a, b} द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए। संक्रिया के लिए संक्रिया सारणी लिखिए।
हल:
समुच्चय {1, 2, 3, 4, 5} पर संक्रिया ^ सारणी निम्न है-

प्रश्न 4.
समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी (सारणी 1.2) द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए तथा
(i) (2 * 3) * 4 तथा 2 * (3 * 4) का परिकलन कीजिए।
(ii) क्या * क्रम विनिमेय है?
(iii) (2 * 3) * (4 * 5) का परिकलन कीजिए। (संकेत : निम्न सारणी का प्रयोग कीजिए।)

हल:
(i) दी गई सारणी से
(2 * 3) * 4 = 1 * 4 = 1
तथा 2 * (3 * 4) = 2 * 1 = 1

(ii) माना a, b ϵ {1, 2, 3, 4, 5}
∴ सारणी से, a * a = a (a ≠ b) तथा a, b विषम संख्या है
a * b = b * a = 1
2 * 4 = 4 * 2 = 2 जहाँ a तथा b सम संख्या तथा a ≠ b
अतः a * b = b * a
अतः द्विआधारी संक्रिया क्रम विनिमेय है।

(iii) सारणी से,
(2 * 3) * (4 * 5) = 1 *1
= 1

प्रश्न 5.
मान लीजिए कि समुच्चय {1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया *’, a *’ b = a तथा b का HCF द्वारा परिभाषित है। क्या संक्रिया *’ उपर्युक्त प्रश्न 4 में परिभाषित संक्रिया * के समान है? अपने उत्तर का औचित्य भी बतलाइए।
हल:
यहाँ समुच्चय {1, 2, 3, 4, 5} संक्रिया a*’ b H.C.F. a, b द्वारा परिभाषित है।
इस संक्रिया की निम्न सारणी दी गयी है-

प्रश्न 4 में दी गई सारणी और यह सारणी समान है।
अतः संक्रिया *’ तथा * समान है।

प्रश्न 6.
मान लीजिए कि N में एक द्विआधारी संक्रिया, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
(i) 5 * 7, 20 * 16
(ii) क्या संक्रिय * क्रम विनिमेय है?
(iii) क्या * साहचार्य है?
(iv) N में * का तत्समक अवयव ज्ञात कीजिए।
(v) N के कौन-से अवयव * संक्रिया के लिए व्युत्क्रमणीय है?
हल:
द्विआधारी संक्रिया (Binary Operations) * इस प्रकार परिभाषित है कि
a * b = a तथा b का L.C.M.
(i) 5 * 7 =5 तथा 7 का L.C.M.
= 35
तथा 20 * 16 = 20 तथा 16 का L.C.M.
= 80

(ii) a * b = a तथा b का L.C.M.
= b तथा a का L.C.M
a * b = b * a
अतः द्विआधारी संक्रिया क्रम विनिमेय है।

(iii) a * (b * c) = a * (b तथा c का L.C.M.)
= a तथा (b तथा c का L.C.M.) का L.C.M.
= a, b तथा c का L.C.M.
इसी प्रकार
(a * b) * c =(a तथा b का L.C.M.) * c
=a, b, c of L.C.M.
⇒ a *(b * c) =(a * b) * c
अतः द्विआधारी संक्रिया * साहचर्य है।

(iv) N में * संक्रिया की तत्समक अवयव 1 है।
∵ 1 * a = a * 1 = a
= 1 तथा a का L.C.M.

(v) माना * : N × N → N इस प्रकार परिभाषित है कि a * b = a तथा b का L.C.M.
∴ a = 1, b = 1 के लिए,
a * b = 1 = b * a
अत: 1a* संक्रिया के लिए व्युत्क्रमणीय है।

प्रश्न 7.
क्या समुच्चय {1, 2, 3, 4, 5} में a * b = a तथा b का LCM द्वारा परिभाषित * एक द्विआधारी संक्रिया है? अपने उत्तर का औचित्य भी बतलाइए।
हल:
दिया गया समुच्चय = {1, 2, 3, 4, 5} द्विआधारी संक्रिया द्वारा परिभाषित है कि a * b = a और b का LCM 2 * 6 = 6 जो कि समुच्चय {1, 2, 3, 4, 5} में नहीं है इसलिए * एक द्विआधारी संक्रिया है।

प्रश्न 8.
मान लीजिए कि N में a * b = a तथा b का HCF द्वारा परिभाषित एक द्विआधारी संक्रिया है। क्या * क्रमविनिमेय है? क्या * साहचर्य है? क्या N में इस द्विआधारी संक्रिया के तत्समक का अस्तित्व है?
हल:
यहाँ N, प्राकृत संख्याओं का समुच्चय है।
द्विआधारी संक्रिया a * b = a, b का H.C.F. द्वारा परिभाषित
(i) a, b का H.C.F. = b, a के H.C.F.
a * b = b * a
अतः संक्रिया क्रमविनिमेय है।

(ii) a * (b * c)= a * (b, c का H.C.F.)
=a व b, c का H.C.F.
= a, b, c का H.C.F.
(a * b) * c = (a, b का H.C.F.) * c
= a, b व c का H.C.F.
= a, b, c का H.C.F.
a * (b * c)= (a * b) * c (∵ संक्रिया साहचर्य है)

(iii) 1 * a = a * 1 = 1 ≠ a
अतः तत्समक अवयव का अस्तित्व नहीं है।

प्रश्न 9.
मान लीजिए कि परिमेय संख्याओं के समुच्चय में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
(i) a * b = a – b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a – b)2
(v) a * b =
(vi) a * b = ab2
ज्ञात कीजिए कि इनमें से कौन-सी संक्रियाएँ क्रमविनिमेय हैं और कौन-सी साहचर्य हैं।
हल:
यहाँ परिमेय संख्याओं का समुच्चय Q दिया है।
(i) a * b = ab – b, द्विआधारी संक्रिया है।
(a) b * a = b – a
∴ a – b ≠ b – a ⇒ a * b ≠ b * a
अत: यह संक्रिया क्रमविनिमेय नहीं है।
(b) a * (b * c) = a * (b – c) = a – (b – c) = a – b + c
(a * b) * c = (a-b)* c = a – b -c
∴ a – b + c ≠ a – b – c = a * (b * c) * (a * b) * c
अतः यह संक्रिया साहचर्य नहीं है।

(ii) (a) a * b = a2 + b2
∴ b * a = b2 + a2 = a2 + b2
⇒ a * b = b * a
अत: यह संक्रिया क्रमविनिमेय है।
(b) a * (b * c) = a * (b2 + c2) = a2 + (b2 + c2)2
(a + b) * c = (a2 + b2) * c = (a2 + b2)2 + c2
⇒ a * (b * c) ≠ (a * b) * c.
अतः यह * संक्रिया साहचर्य नहीं है।

(iii) संक्रिया a * b = a + ab द्वारा परिभाषित है।
(a) a * b = a (1 + b), b * a = b + ba = b (1 + a)
∴ a * b + b * a
अतः यह * संक्रिया क्रमविनिमेय नहीं है।
(a) a * (b * c) = a + (b + bc)= a + a (b + bc)
= a + ab + abc
(a * b) * c = (a + ab) * c = (a + ab) + (a + ab)c
= a + ab + ac + abc
∴ a * (b * c) (ab) * c
अतः यह * संक्रिया साहचर्य नहीं है।

(iv) दिया है : a * b = (a – b)2
(a) a * b = (a – b)2, b * a = (b – a)2 = (a – b)2
∴ a * b = b * a
अतः यह * संक्रिया क्रमविनिमेय है।
(b) a * (b * c) = a * (b – c) = [a – (b – c)2]2
(a * b) * c = (a – b)2 * c = [(a – b)2 – c]2
∴ a * (b * c) ≠ (a * b) * c
अतः यह * संक्रिया साहचर्य नहीं है।

(v) a * b =

अतः यह * संक्रिया साहचर्य है।

(vi) a * b = ab2
(a) a * b = ab2, b * a = ba
∴ a * b ≠ b * a
अत: यह * संक्रिया क्रमविनिमेय नहीं है।
(b) a * (b * c) = a + bc2 = a (bc2)2 = ab2c4
(a * b) * c = ab2 * c = ab2c2 = ab2c2
∴ a + (b * c) ≠ (a * b) * c.
अतः यह * संक्रिया साहचर्य नहीं है।

प्रश्न 10.
सिद्ध कीजिए कि प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
हल:
यहाँ (i) a * b = a – b
यदि e तत्समक अवयव हो तो
a * e = a – e, e * a = e – a
∴ a – e ≠ e – a ⇒ a * e ≠ e * a
अतः e का अस्तित्व नहीं है।

(ii) a * b = a2 + b2
∴ a * e = a2 + e2, e * a = e2 + a2
a * e = e * a ≠ a
अतः e का अस्तित्व नहीं है।

(iii) a * b = a + ab
a * e = a + ae, e * a = e + ea
∴ a * e # e * a # a
अत: e का अस्तित्व नहीं है।

(iv) a * b = (a – b)
a * e = (a – e)2 # a, e * a = (e – a)2 # a
a * e = e * a # a
अतः e का अस्तित्व नहीं है।

(v) a * b =
a * e = # a, e * a =  # a
∴ a * e = e * a # a
अतः e का अस्तित्व नहीं है।

(vi) a * b = ab2
a * e = ae2 # a, e * a = ea2 # a
∴ a * e # e * a # a
अतः e का अस्तित्व नहीं है।

प्रश्न 11.
मान लीजिए कि A = N × N है तथा A में (a, b) * (c, d) = (a + c, b + d)द्वारा परिभाषित एक द्विआधारी संक्रिया है। सिद्ध कीजिए कि * क्रम विनिमेय तथा साहचर्य है। A में * का तत्समक अवयव, यदि कोई है, तो ज्ञात कीजिए।
हल:
माना A = N × N
द्विआधारी संक्रिया (Binary operation) * इस प्रकार परिभाषित है कि
(a, b) * (c, d) = (a + c, b + d)
इसलिए (c, d) * (a, b) = (c + a, d + b)
=(a + c, b + d)
=(a, b) * (c, d)
अतः द्विआधारी संक्रिया * क्रम विनिमेय है
पुनः (a, b)* [(c, d) * (e, f)]
= (a, b) * (c + e, d + f)
= (a + c + e, b + d + f)
तथा [(a, b) * (c, d)] * (e, f)
= (a + c, b + d) * (e, f)
= (a + c + e, b + d + f)
= (a, b) * [(c, d) * (e, f)]
= [(a, b) * (c, d)]* (e, f)
अतः दी गई संक्रिया * साहचर्य है।
A में तत्समक अवयव का अस्तित्व नहीं है।

प्रश्न 12.
बतलाइए कि क्या निम्नलिखित कथन सत्य हैं या असत्य हैं। औचित्य भी बतलाइए।
(i) समुच्चय N में किसी भी स्वेच्छ द्विआधारी संक्रिया* के लिए a * a = a, ∀a ϵ N
(ii) यदि N में * एक क्रमविनिमेय द्विआधारी संक्रिया है तो a * (b * c)=(c * b) * a
हल:
यहाँ द्विआधारी संक्रिया समुच्चय N पर इस प्रकार परिभाषित की गयी है कि
a * a = a ∀ a ϵ N
(i) यहाँ पर * संक्रिया में केवल एक ही अवयव का प्रयोग किया गया है।
अतः यह कथन असत्य है।
(ii) वास्तविक संख्याओं में समुच्चय पर संक्रिया क्रमविनिमेय है।
b * c = c * b
= (c * b) * a = (b * c) * a = a * (b * c)
∴ a * (b * c) = (c * b) * a
अतः यह कथन सत्य है।

प्रश्न 13.
a * b = a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए।
(A) * साहचर्य तथा क्रमविनिमेय दोनों है
(B) * क्रमविनिमेय है किन्तु साहचर्य नहीं है
(C) * साहचर्य है किन्तु क्रमविनिमेय नहीं है
(D) * न तो क्रमविनिमेय है और न साहचर्य है
हल:
यहाँ द्विआधारी संक्रिया को समुच्चय पर इस प्रकार परिभाषित किया गया है कि
a * b = a3 + b3
(a) a * b = a3 + b3, b * a = b3 + a3 = a3 * b3
∴ a * b = b * a
अत: यह संक्रिया क्रमविनिमेय है।
(b) a * (b * c) = a * (b3 + c3) = a3 + (b3 + c3)3
(a * b) * c= (a3 + b3) * c = (a3 + b3) + c3
∴ a * (b * c) ≠ (a * b) * c
अतः यह * संक्रिया साहचर्य नहीं है।
∴ संक्रिया क्रमविनिमेय परन्तु साहचर्य नहीं है।
अतः विकल्प (B) सही है।

विविध प्रश्नावली

प्रश्न 1.
मान लीजिए कि f: R → R, f(x) = 10x + 7 द्वारा परिभाषित फलन है। एक ऐसा फलन g: R → R ज्ञात कीजिए, जिसके लिए gof = fog = IR हो।
हल:
यहाँ f: R → R इस प्रकार है कि f(x) = 10x + 7
माना y = 10x + 7

अतः f व्युत्क्रमणीय है, जो g : Y → X, g(y) =  से परिभाषित है।

प्रश्न 2.
मान लीजिए कि f: W → W, f(n) = n – 1, यदि ॥ विषम है तथा f (n) = n + 1, यदि n सम है, द्वारा परिभाषित है। सिद्ध कीजिए कि f व्युत्क्रमणीय है। f का प्रतिलोम ज्ञात कीजिए। यहाँ के समस्त पूर्णांकों का समुच्चय
हल:
दिया है : f: W → W को

यदि n1 विषम n2 दोनों सम हों तो
f(n1) = f(n2) ⇒ n1 – 1 = n2 + 1
या n1 – n2 = 2, जो सम्भव नहीं है।
यदि n1 और n2 विषम हों तो
f(n1)= f(n2) ⇒ n1 – 1 = n2 – 1
⇒ n1 = n2
यदि n1 और n2 दोनों सम हों, तो
n1 + 1 = n2 + 1 ⇒ n1 = n2
अतः f एकैकी भी है।
सहप्रान्त में प्रत्येक अवयव 2r + 1, प्रान्त का 2 प्रतिबिम्ब है। इसी प्रकार कोई भी सम संख्या प्रान्त का 2r + 1 का प्रतिबिम्ब है।
इस प्रकार सहप्रान्त का प्रत्येक अवयव प्रान्त के किसी – न – किसी अवयव का प्रतिबिम्ब है।
∴ f आच्छादक तथा व्युत्क्रमणीय है।
अतः f – 1(y) = g(y) इस प्रकार है कि
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन विविध प्रश्नावली img 3
अतः का प्रतिलोम स्वयं है।

प्रश्न 3.
यदि f : R → R जहाँ f(x) = x2 – 3x + 2 द्वारा परिभाषित है तो fIf (x)] ज्ञात कीजिए।
हल:
यहाँ f: R → R, f(x) = x2 – 3x + 2 द्वारा परिभाषित है।
∴ [f(x)] = f(x2 – 3x + 2)
= (x2 – 3x + 2)2 – 3(x2 – 3x + 2) + 2
= (x4 + 9x2 + 4 – 6x3 – 12x + 4x2) + (- 3x2 + 2x – 6) + 2
= x4 – 6x3 + 10x2 – 3x

प्रश्न 4.
सिद्ध कीजिए कि

⇒ x1 (1 – x2) = x2(1 – x1)
⇒ x1 – x1x2 = x2 – x2x1
∴ x1 = x2
अतः f एकैकी है।
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन विविध प्रश्नावली img 6
अतः दोनों ही अवस्था में सहप्रान्त का प्रत्येक अवयव प्रान्त के किसी – न – किसी अवयव का प्रतिबिम्ब है।
∴ f आच्छादक है।
अत: f एकैकी तथा आच्छादक है।

प्रश्न 5.
सिद्ध कीजिए कि f(x) = x3 द्वारा प्रदत्त फलन f: R → R एकैक (Injective) है।
हल:
यहाँ f: R → R, f(x) = x3 द्वारा परिभाषित है।
f(x1) = f(x2) ⇒ x13 x23
⇒ x1 = x1
अतः f एकैकी है।

प्रश्न 6.
दो फलनों f: N → Z तथा g : Z → Z के उदाहरण दीजिए जो इस प्रकार हों कि gof एकैक है परन्तु g एकैक नहीं है।
हल:
(i) यहाँ f: N → Z तथा g: Z → Z द्वारा परिभाषित है।
f(x) = – x, g(x) = |x| से,
g(x)= |x|, – 1, 1 दोनों का प्रतिबिम्ब 1 है। .
∴ g एकैक नहीं है।
परन्तु g[f(x)] =g (- x) = |-x| = |x|
x ϵ N, g[(fx)] = |x|x = x
अतः gof एकैकी है।

(ii) f(x) = -2x, g(x) = |2x|

प्रश्न 7.
दो फलनों f: N → N तथा g: N → N के उदाहरण दीजिए, जो इस प्रकार हों कि gof आच्छादक है किन्तु f आच्छादक नहीं है।
हल:
(i) यहाँ f : N → N तथा g : N → N

f(x) = y = x + 1
∴ x = y – 1
यदि y – 1, x = 0 जो कि प्राकृत संख्या नहीं है।
अतः f आच्छादक नहीं है।
यदि x > 1,
gof (x) = g[f(x)] =g (x + 1) = (x + 1) – 1 = x
अतः gof आच्छादक है।
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन विविध प्रश्नावली img 8

प्रश्न 8.
एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। ‘निम्नलिखित तरह से P(X) में एक सम्बन्ध R परिभाषित कीजिए-
P(x) में उपसमुच्चयों, A, B के लिए ARB, यदि और केवल यदि A⊂B है। क्या R,P(X) में एक तुल्यता सम्बन्ध है? अपने उत्तर का औचित्य भी लिखिए।
हल:
(i) यहाँ A ⊂ A ⇒ R स्वतुल्य है। .
(ii) A ⊂ B, B ⊄ A ⇒ R सममित नहीं है।
(iii) A ⊂ B, B ⊂ C ⇒ A ⊂ C ⇒ R संक्रामक है।
अतः R तुल्यता सम्बन्ध नहीं है।

प्रश्न 9.
किसी प्रदत्त अरिक्त समुच्चय x के लिए एक द्विआधारी संक्रिया* : P(X) × P(X) → P(X) पर विचार कीजिए, जो A * B = A ∩ B, ∀ A, B ϵ P(X) द्वारा परिभाषित है, जहाँ P(X) समुच्चय x का घात समुच्चय (Power set) है। सिद्ध कीजिए कि इस संक्रिया का तत्समक अवयव X है तथा संक्रिया के लिए P(X) में केवल x व्युत्क्रमणीय अवयव है।
हल:
दिया है : P(X) × P(X) → P(X)
तथा A * B = A ∩ B
∴ X * A = X ∩ A = A, सभी A के लिए
इसी प्रकार A * X = A ∩ X = A.
∴X एक तत्समक अवयव है तथा व्युत्क्रमणीय अवयव है। माना I एक दूसरा तत्समक अवयव है।
∴ I ∩ A = A सभी A के लिए
तथा x ϵ X, I ∩ {x} = {x}
⇒ x ϵ I ⇒ x ⊂ I और I ⊂ x
∴ I = X

प्रश्न 10.
समुच्चय {1, 2, 3,…., n} से स्वयं तक के समस्त आच्छादक फलनों की संख्या ज्ञात कीजिए।
हल:
माना Y : 1 2 3….n
तथा X : 1 2 3…..n
समुच्चय – Y का प्रत्येक अवयव समुच्चय X में किसी – न – किसी अवयव का प्रतिबिम्ब है।
इस प्रकार x और Y के अवयवों में सम्बन्ध
n (n – 1)(n – 2)… 3 2 1 = n! तरीकों से हो सकता है।
अतः द्विआधारी संक्रियाओं की संख्या n! है।

प्रश्न 11.
मान लीजिए कि S = {a, b, c} तथा T = {1, 2, 3} है। S से T तक के निम्नलिखित फलनों F के लिए F-1 ज्ञात कीजिए, यदि उसका अस्तित्व है :
(i) F = {(1, 3), (b, 2), (c, 1)}
(ii) F = {(a, 2), (b, 1), (c, 1)}
हल:
(i) यहाँ S = {a, b, c},T = {1, 2, 3}
तथा F = {(a, 3), (b, 2), (c, 1)}
F(a)= 3, F(b)= 2, F(c)=1
∴ F-1(3)= a, F-1 (2) = F-1 (1) = c
∴ F-1 = {(3, a),(2, b), (1, c)}
(ii) F = {(a, 2),(b, 1), (c, 1)}
फलन F में b तथा c का प्रतिबिम्ब 1 है।
∴ यह एकैकी नहीं है।
अत: यह फलन व्युत्क्रमणीय नहीं है।

प्रश्न 12.
a * b=|a – b| तथा a o b = a, ∀ a, b ϵ R द्वारा परिभाषित द्विआधारी संक्रियाओं* : R × R → R तथा 0: R × R → R पर विचार कीजिए। सिद्ध कीजिए कि * क्रमविनिमेय है परन्तु साहचर्य नहीं है, . साहचर्य है परन्तु क्रमविनिमेय नहीं है। पुनः सिद्ध कीजिए कि सभी a, b, c ϵ R के लिए a * (b o c) = (a * b) o (a * c) है। [यदि ऐसा होता है तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित (Distributes) होती है। क्या o संक्रिया * पर वितरित होती है? अपने उत्तर का औचित्य भी बतलाइए।
हल:
दिया है : a * b = |a – b| और a o b = a
(i) (a) a * b = |a – b|, |b * a| = |b – a| = |a – b|
अतः यह क्रमविनिमेय संक्रिया है।
(b) a * b = |a – b|, b * c = |b – c|
⇒ a * c ≠ |a – c|
अत: यह साहचर्य संक्रिया नहीं है।

(ii) (a) a o b = a, b o a = b ⇒ a ≠ b
अतः o क्रमविनिमेय संक्रिया नहीं है।
a o b = a, b o c = b, a o c = a
अतः o एक साहचर्य संक्रिया है।

(iii) सिद्ध करना है :
a * (boc)= (a * b) 0 (b * c)
L.H.S. = a * (boc)= a * b = |a – b|
R.H.S. = (a * b) 0 (b * c)
= |a – b| o |b – c| = |a – b|
∴ L.H.S. = R..S.
अतः A * (boc)= (a * b) o (b * c)

(iv) क्या a o (b * c) और (a o b) * (a0c) बराबर है?
L.H.S. = a 0 * (b * c) = ao |b – c| = a
R.H.S. = (aob) * (aoc) = a * a = |a – a|= 0
∴ L.H.S. ≠ R.H.S.
अतः संक्रिया o संक्रिया * पर वितरण संक्रिया नहीं है।

प्रश्न 13.
किसी प्रदत्त अरिक्त समुच्चय x के लिए मान लीजिए कि * : P(X) × P(X) → P(X), जहाँ A * B = (A – B) ∪ (B – A), ∀A, B ϵ P(X) द्वारा परिभाषित है। सिद्ध कीजिए कि रिक्त समुच्चयक ϕ, संक्रिया * का तत्समक है तथा P(X) के समस्त अवयव A व्युत्क्रमणीय हैं, इस प्रकार कि A-1 = A.
हल:
यहाँ * : P(X) × P(X) → P(X) जो इस प्रकार परिभाषित है।
A * B = (A – B) ∪ (B – A)
दिया है : A * B = (A – B) ∪ (B – A)
जब B = ϕ क रखने पर,
A * ϕ = (A – ϕ) ∪ (ϕ – A)
= A ∪ ϕ = A
ϕ * A = (ϕ – A) ∪ (A – ϕ) = ϕ ∪ A = A
⇒ A * ϕ = ϕ * A = A
अतः ϕ तत्समक अवयव है।

(ii) A * A = (A – A) ∪ (A – A) = ϕ
A * A = ϕ = A-1 = A

प्रश्न 14.
निम्नलिखित प्रकार से समुच्चय {0, 1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया * परिभाषित कीजिए।

सिद्ध कीजिए कि शून्य (0) इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव a ≠ 0 व्युत्क्रमणीय है, इस प्रकार कि 6 – c, a का प्रतिलोम है।
हल:
यहाँ संक्रिया समुच्चय A = {0, 1, 2, 3, 4, 5} पर
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन विविध प्रश्नावली img 10
(i) e तत्समक अवयव है, यदि a * e = e * a = a
अब, माना e = 0, a * e = a + 0 = a
e* a = 0 + a = a
∴ a * e = e * a = a
अतः O तत्समक अवयव है।

(ii) b अवयव a का व्युत्क्रम है, यदि a * b = b * a = e
a * (6 – a)= a + (6 – a) – 6 = a + 6 – a – 6 = 0
(6 – a) * a = (6 – a) + a – 6 = 0
∴ a * (6 – a) = (6 – a) * a = 0
अतः A के प्रत्येक अवयव a का 6 – a व्युत्क्रम है।

प्रश्न 15.
मान लीजिए कि A ={ – 1, 0, 1, 2}, B = { – 4, – 2, 0, 2} और f, g: A → B, क्रमशः f(x) = x2 – x, x ϵ A तथा g(x) = 2x  – 1. x ϵ A द्वारा परिभाषित फलन हैं क्या है तथा g समान हैं? अपने उत्तर का औचित्य भी बताइए।
हल:
यहाँ, यदि A = { – 1, 0, 1, 2) B = { – 4, – 2, 0, 2}
और f, g . A → B फलन की f(x) = x2 – x, x ϵ A और g(x)=  . 1, x ϵ A द्वारा परिभाषित है।

प्रश्न 16.
यदि A = {1, 2, 3} हो तो ऐसे सम्बन्ध जिनमें अवयव (1, 2) तथा (1, 3) हों और जो स्वतुल्य तथा सममित हैं किन्तु संक्रामक नहीं है, की संख्या है
(A) 1
(B) 2
(C) 3
(D) 4
हल:
यहाँ, A = {1, 2, 3}
वह सम्बन्ध जिसमें (1, 2) और (1, 3) हों तथा सम्बन्ध स्वतुल्य व सममित हो तथा संक्रामक न हो,
{(1, 2), (1, 3), (1, 1), (2, 2), (3, 3), (2, 1), (3, 1)}
∴ ऐसा एक ही सम्बन्ध है।
अतः विकल्प (A) सही है।

प्रश्न 17.
यदि A= {1, 2, 3} हो तो अवयव (1, 2) वाले तुल्यता सम्बन्धों की संख्या है
(A) 1
(B) 2
(C) 3
(D) 4
हल:
यहाँ, A = {1, 2, 3}
तुल्यता सम्बन्ध जिसमें (1, 2) सम्मिलित हो ऐसे 2 सम्बन्ध हो सकते हैं।
अतः विकल्प (B) सही है।

प्रश्न 18.
मान लीजिए कि f :R → R है तब निम्नलिखित प्रकार से परिभाषित चिह्न फलन (signum Function) है।

तथा g : R → R, g(x) = [x] द्वारा प्रदत्त महत्तम पूर्णांक फलन है, जहाँ [x], x से कम या x के बराबर पूर्णांक है तो क्या fog तथा gof, अन्तराल [0, 1] में सम्पाती (coincide) हैं?
हल:
यहाँ f: R → R, जो
MP Board Class 12th Maths Book Solutions Chapter 1 संबंध एवं फलन विविध प्रश्नावली img 13
तथा g: R → R जो g(x) = [x] से परिभाषित है।
∴ x ϵ [0, 0, f(x) = 1, g(x) = 0.
gof (x) = g [f(x)] = g(1) = 1
तथा fog(x) = f(0)= 0
इस प्रकार fog ≠ gof
अतः अन्तराल (0, 1) में fog तथा gof सम्पाती नहीं हैं।

प्रश्न 19.
समुच्चय {a, b} में द्विआधारी संक्रियाओं की संख्या है
(A) 10
(B) 16
(C) 20
(D) 8
हल:
यहाँ समुच्चय {a, b}
समुच्चय A में 2 अवयव हैं।
द्विआधारी संक्रियाओं की संख्या = 24 = 16
अतः विकल्प (B) सही है।

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *