PBN 10th Maths

PSEB Solutions for Class 10 Maths Chapter 13 पृष्ठीय क्षेत्रफल और आयतन Ex 13.4

PSEB Solutions for Class 10 Maths Chapter 13 पृष्ठीय क्षेत्रफल और आयतन Ex 13.4

PSEB 10th Class Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल और आयतन Ex 13.4

(जब तक अन्यथा न कहा जाए, π = 22/7 लीजिए।)

प्रश्न 1.
पानी पीने वाला एक गिलास 14 cm ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 cm और 2 cm हैं। इस गिलास की धारिता ज्ञात कीजिए। (Pb. 2015 Set B)
हल :

प्रश्न 2.
एक शंकु के छिन्नक की तिर्यक ऊँचाई 4 cm है तथा इसके वृत्तीय सिरों के परिमाप ( परिधियां) 18 cm और 6 cm हैं। इस छिन्नक का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल :
छिन्नक की तिर्यक ऊँचाई = 4 cm

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 2

प्रश्न 3.
एक तुर्की टोपी शंकु के एक छिन्नक के आकार की है ( देखिए आकृति)। यदि इसके खुले सिरे की त्रिज्या 10 cm है, ऊपरी सिरे की त्रिज्या 4 cm है और टोपी की तिर्यक ऊँचाई 15 cm है, तो इसके बनाने में प्रयुक्त पदार्थ का क्षेत्रफल ज्ञात कीजिए।

हल :

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 4

छिन्नक के निचले सिरे की त्रिज्या (R) = 10 cm
छिन्नक के ऊपरी सिरे की त्रिज्या (r) = 4 cm
छिन्नक की तिर्यक ऊँचाई (l) = 15 cm

छिन्नक का वक्र पृष्ठीय क्षेत्रफल = πl [R + r]
22/7 × 15 [10 + 4]
22/7 × 15 × 14
= 22 × 15 × 2
= 660 cm2.
बंद सिरे का क्षेत्रफल = r = Fx (4)2.
प्रयुक्त पदार्थ का कुल क्षेत्रफल = छिन्नक का वक्र पृष्ठीय क्षेत्रफल + बंद सिरे का क्षेत्रफल
= 660 + 50.28
= 710.28 cm2.
अतः प्रयुक्त पदार्थ का कुल क्षेत्रफल = 710.28 cm2.

प्रश्न 4.
धातु की चादर से बना और ऊपर से खुला एक बर्तन शंकु के एक छिन्नक के आकार का है, जिसकी ऊँचाई 16 cm है तथा निचले और ऊपरी सिरों की त्रिज्याएँ क्रमशः 8 cm और 20 cm हैं। ₹ 20 प्रति लीटर की दर से, इस बर्तन को पूरा भर सकने वाले दूध का मूल्य ज्ञात कीजिए। साथ ही, इस बर्तन को बनाने के लिए प्रयुक्त धातु की चादर का मूल्य ₹ 8 प्रति 100 cm- की दर से ज्ञात कीजिए। (= 3.14 लीजिए।)
हल :

PSEB 10th Class Maths Solutions Chapter 13 ਸਤੁਦਾ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ Ex 13.4 5

प्रश्न 5.
20 cm ऊँचाई और शीर्ष कोण (vertical angle) 60° वाले एक शंकु की ऊँचाई के बीचो-बीच से होकर जाते हुए एक तल से दो भागों में काटा गया है, जबकि तल शंकु के आधार के समांतर है। यदि इस प्राप्त शंकु के छिन्नक को व्यास 1/16 cm वाले एक तार के रूप में बदल दिया जाता है तो तार की लंबाई ज्ञात कीजिए।
हल :
शंकु का शीर्ष कोण = 60°
शंक का शीर्षलम्ब शीर्ष कोण को द्विभाजित करता है।
∠EOF = 30°

H = 7964.44 m
अतः, बेलनाकार तार की लंबाई (H) = 7964.44 m

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *