MP 10 Maths

MP Board Class 10th Maths | रचनाएँ

MP Board Class 10th Maths | रचनाएँ

MP Board Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1

निम्न में से प्रत्येक के लिए रचना का औचित्य भी दीजिए।

प्रश्न 1.
7.6 cm लम्बा एक रेखाखण्ड खींचिए और इसे 5 : 8 अनुपात में विभाजित कीजिए।
हल :

मान लीजिए AB = 7.6 cm लम्बा दिया हुआ रेखाखण्ड है जिसे 5 : 8 के अनुपात में विभाजित करना है।
रचना के चरण :

  1. AB = 7.6 cm लम्बा एक रेखाखण्ड खींचिए।
  2. रेखा AB के बिन्दु A पर नीचे की ओर ∠BAX = θ एक न्यूनकोण बनाते हुए किरण AX खींचिए।
  3. रेखा AB के बिन्दु B पर ऊपर की ओर ∠ABY = ∠BAY = θ न्यूनकोण बनाते हुए किरण BY खींचिए।
  4. AX एवं BY से क्रमश: AA1 = A1A2 = A2A3 = A3A4 = A4A5 = BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7 = B7B8 रेखाखण्ड काटिए।
  5. A6B8 रेखाखण्ड को मिलाइए जो AB को बिन्दु C पर प्रतिच्छेद करता है।

अत: AB के अभीष्ट विभाजित खण्ड AC : CB = 5 : 8 है।
एवं AC = 2.9 (लगभग)
तथा BC = 4.7 (लगभग)
उत्तर रचना का औचित्य : ∆CAA5 एवं ∆CBB8 में,
∵ ∠CAA5 = ∠CBB8 [रचना से हैं।
∵ ∠ACA5 = ∠BCB8 [शीर्षाभिमुख कोण हैं]
⇒ ∆CAA5 ~ ∆CBB8 [AA समरूपता]
⇒ ACBC=AA5BB8=58
⇒ AC : BC = 5 : 8.

प्रश्न 2.
4 cm, 5cm एवं 6 cm भुजाओं वाले एक त्रिभुज की रचना कीजिए और इसके समरूप अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की 23 गुनी हैं।
हल :

मान लीजिए कि एक दिए हुए त्रिभुज ABC की रचना करनी है जिसकी भुजाएँ AB = 4 cm, BC = 5 cm और CA = 6 cm हैं तथा इसके समरूप एक अन्य त्रिभुज की रचना दिए हुए स्केल गुणक 23 के अनुसार करनी है।
रचना के पद :

  1. एक रेखाखण्ड BC = 5 cm खींचिए।
  2. B को केन्द्र मानकर AB = 4 cm की त्रिज्या एवं C को केन्द्र मानकर CA = 6 cm की त्रिज्या से चाप खींचिए जो परस्पर बिन्दु A पर प्रतिच्छेद करते हैं।
  3. AB एवं AC को मिलाइए। इस प्रकार ∆ABC की रचना होती है।
  4. BC रेखाखण्ड के बिन्दु B पर नीचे की ओर ∠CBX = θ एक न्यूनकोण बनाते हुए किरण BX खींचिए।
  5. किरण BX से BB1 = B1B2 = B2B3 तीन बराबर रेखाखण्ड खींचिए।
  6. B3C को मिलाइए।
  7. B2 से B2C’||B3BC एक रेखाखण्ड खींचिए जो BC को बिन्दु C’ पर प्रतिच्छेद करता है।
  8. C’ से C’ A’ || CA एक रेखाखण्ड खींचिए जो AB को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः इस प्रकार बना अभीष्ट ∆A’BC’ ~ ∆ABC है जिसका स्केल गुणक 23 है।
रचना का औचित्य : ∆BA’C’ एवं ∆BAC में
∵∠A’BC’ = ∠ABC [उभयनिष्ठ हैं]
∵∠A’C’B = ∠ACB रचना से (संगत कोण है)]
⇒ ∆A’BC’ ~ ∆ABC [AA समरूपता]
⇒ ABAB=BCBC=BB2BB3=23 [समरूप त्रिभुजों की संगत भुजाएँ]

प्रश्न 3.
5 cm, 6 cm और 7 cm भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की 75 गुनी हैं।
हल :

मान लीजिए एक दिए हुए ∆ABC की भुजाएँ क्रमश: AB = 5 cm, BC = 6 cm एवं CA = 7 cm की रचना करके एक अन्य ∆A’BC’ समरूप त्रिभुज की रचना करनी है जिसका स्केल गुणक 75 हैं।
रचना के पद :

  1. एक रेखाखण्ड BC = 6 cm खींचिए।
  2. B को केन्द्र लेकर AB = 5 cm तथा C को केन्द्र लेकर CA = 7 cm की त्रिज्या से चाप खींचिए जो परस्पर बिन्दु A प्रतिच्छेद करते हैं।
  3. AB एवं AC को मिलाइए। इस प्रकार ∆ABC की रचना होगी।
  4. BC को आगे X तक तथा BA को आगे Y तक बढ़ाइए एवं बिन्दु B पर (नीचे की ओर) < XBZ = θ एक न्यूनकोण बनाते हुए किरण BZ खींचिए।
  5. BZ से BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7 रेखाखण्ड काटिए।
  6. B5 को C से मिलाइए।
  7. B7 से B7C’ || B5C रेखाखण्ड खींचिए जो BX को बिन्दु C’ पर प्रतिच्छेद करता है।
  8. C’ से C’A’ || CA रेखाखण्ड खींचिए जो BY को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः इस प्रकार बना अभीष्ट ∆A’BC’ ~ ∆ABC है जिसका स्केल गुणक 75 है।
रचना का औचित्य : ∆A’ BC’ एवं ∆ABC में
∵ ∠A’BC’ = ∠ABC [उभयनिष्ठ हैं]
∵ ∠A’C’B = ∠ACB [रचना से (संगत कोण हैं)]
⇒ ∆A’BC’ ~ ∆ABC [AA समरूपता]
⇒ BABA=BCBC=BB7BB5=75[समरूप प्रमुख का संगत मुजाए ह]

प्रश्न 4.
आधार 8 cm तथा ऊँचाई 4 cm के एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ इस समद्विबाहु त्रिभुज की संगत भुजाओं की
112, गुनी हैं।
हल :

मान लीजिए एक दिए हुए समद्विबाहु त्रिभुज ABC का आधार BC = 8 cm एवं शीर्ष लम्ब (ऊँचाई) AD = 4 cm है तथा AB = AC की रचना करनी है तथा एक अन्य समरूप त्रिभुज A’BC’ की रचना करनी है जिसका स्केल गुणक 112 = 32 हैं।
रचना के पदः

  1. आधार BC = 8 cm का एक रेखाखण्ड खींचिए।
  2. BC का लम्बार्द्धक PQ खींचिए जो आधार BC को बिन्दु M पर समद्विभाजित करता है।
  3. MP में से MA = 4 cm का रेखाखण्ड काटिए।
  4. AB एवं AC को मिलाइए।
    इस प्रकार अभीष्ट ∆ABC (एक समद्विबाहु त्रिभुज) की रचना होती है।
  5. BC, BA को क्रमशः X एवं Y तक बढ़ाइए एवं बिन्दु B पर ∠CBZ = θ एक न्यूनकोण (नीचे की ओर) बनाते हुए किरण BZ खींचिए।
  6. किरण BZ से BB1 = B1B2 = B2B3 रेखाखण्ड काटिए।
  7. B2C को मिलाइए।
  8. B3C’ || B2C खींचिए जो किरण BX को बिन्दु C’ पर प्रतिच्छेद करती है।
  9. C’A’ || CA खींचिए जो किरण BY को बिन्दु A’ पर प्रतिच्छेद करती है।

अतः यही अभीष्ट ∆A’BC’ ~ ∆ABC है, जहाँ स्केल गुणक 32 है अर्थात् ∆A’BC’ की भुजाएँ ∆ABC की संगत भुजाओं की 112 गुनी है।
रचना का औचित्य : ∆A’BC’ एवं ∆ABC में,
∵ ∠A’BC’ = ∠ABC [उभयनिष्ठ हैं]
∵ ∠A’C’B = ∠ACB [संगत कोण हैं-रचना से]
⇒ ∆A’BC’ ~ ∆ABC [AA समरूपता]
⇒ BABA=BCBC=BB3BB2=32 [समरूप त्रिभुजों की संगत भुजाएँ हैं]

प्रश्न 5.
एक त्रिभुज ABC बनाइए जिसमें BC = 6 cm, AB = 5 cm और ∠ABC = 60° हैं। फिर एक त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 34 गुनी हों।
हल :

एक दिए हुए ∆ABC की रचना करनी है जिसमें BC = 6 cm, AB = 5 cm एवं ∠ABC = 60° है तथा इसके समरूप एक अन्य ∆A’BC’ खींचना है।
जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 34 गुनी हो।
रचना के पद :

  1. एक रेखाखण्ड BC = 6 cm खींचा।
  2. BC के बिन्दु B पर ∠CBX = 60° का कोण बनाते हुए एक किरण BX खींची।
  3. BX किरण में से BA = 5 cm का एक रेखाखण्ड काटा।
  4. AC को मिलाया। इस प्रकार ∆ABC की रचना हुई।
  5. BC के बिन्दु B पर ∠CBY = θ एक न्यूनकोण बनाते हुए किरण BY खींची।
  6. किरण BY में से BB1 = B1B2 = B2B3 = B3B4 रेखाखण्ड काटे।
  7. B4C को मिलाया।
  8. बिन्दु B3 से ∠C’B3B = ∠CB4B संगत कोण बनाते हुए C’B3 || CB रेखाखण्ड खींचा जो BC को बिन्दु C’ पर प्रतिच्छेद करता है।
  9. बिन्दु C’ से ∠A’C’B = ∠ACB संगत कोण बनाते हुए रेखाखण्ड, A’C’ खींचा जो AB को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः यही अभीष्ट ∆A’BC’ ~ ∆ABC है जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 34 गुनी हैं।
रचना का औचित्य : त्रिभुज ABC में A’C’ || AC [रचना से]
⇒ ABAB=CBCB …(1) [समरूप त्रिभुज के प्रगुण]
एवं ∆BCB4 में C’B3 || CBA [रचना से]
⇒ CBCB=B3BB4B=34 ….(2) [समरूप त्रिभुज के प्रगुण]
⇒ ABAB=CBCB=34 [समीकरण (1) और (2) से] ।

प्रश्न 6.
एक त्रिभुज ABC बनाइए जिसमें BC = 7 cm, ∠B = 45°, ∠A = 105° हो, फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 43 गुनी हों।
हल :

एक दिए हुए त्रिभुज ABC की रचना करनी है जिसमें BC = 7 cm, ∠B = 45° एवं ∠A = 105°, अतः ∠C = 180° – (45° + 105°) = 180° – 150° = 30° तथा स्केल गुणक 43 वाले समरूप त्रिभुज की रचना करनी है।
रचना के पद :

  1. एक किरण BY खींचिए।
  2. किरण BX से BC = 7 cm का एक रेखाखण्ड काटिए।
  3. बिन्दु B पर ∠CBY = 45° बनाते हुए किरण BY खींचिए।
  4. बिन्दु C पर ∠BCZ = 30° बनाते हुए एक किरण CZ खींचिए जो किरण BY को बिन्दु A पर प्रतिच्छेद करती है। इस प्रकार ∆ABC की रचना होती है।
  5. किरण BX के साथ नीचे की ओर ∠XBT = θ एक न्यूनकोण बनाते हुए किरण BT खींचिए।
  6. किरण BT में से BB1 = B1B2 = B2B3 = B3B4. रेखाखण्ड काटिए।
  7. B3C को मिलाइए।
  8. B4 से B4C’ || B3C खींचिए जो BX को बिन्दु C’ पर प्रतिच्छेद करती है।
  9. C’ से A’C’ || AC रेखाखण्ड खींचिए जो BY को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः यही अभीष्ट ∆A’BC’ ~ ∆ABC है। जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 43 गुनी हैं।
रचना का औचित्य : चूँकि ∆A’BC’ में AC || A’C’ है।
⇒ ABAB=CBCB …(1)[समरूप त्रिभुज के प्रगुण]
एवं ∆C’BB4 में CB3 || C’B4 है
⇒ CBCB=B4BB3B=43 ….(2) [समरूप त्रिभुज के प्रगुण]
⇒ ABAB=CBCB=43 [समीकरण (1) एवं (2) से]

प्रश्न 7.
एक समकोण त्रिभुज की रचना कीजिए जिसकी भुजाएँ (कर्ण के अतिरिक्त) 4 cm तथा 3 cm लम्बाई की हों। फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की 53 गुनी हों।
हल :

मान लीजिए एक दिए हुए समकोण ∆ABC की रचना करनी है जिसका ∠B समकोण है तथा भुजाएँ AB = 4 cm तथा BC = 3 cm हैं। इसके अतिरिक्त एक अन्य । त्रिभुज की रचना करनी है जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 53 गुनी हों।
रचना के चरण :

  1. एक किरण BX खींचिए तथा BX में से BC = 3 cm का रेखाखण्ड काटिए।
  2. बिन्दु B पर BC के साथ ∠CBY = 90° (समकोण) बनाते हुए किरण BY खींचिए।
  3. किरण BY में से BA = 4 cm का रेखाखण्ड काटिए।
  4. AC को मिलाइए। इस प्रकार समकोण ∆ABC की रचना होती है।
  5. बिन्दु B पर BX के साथ ∠XBZ = θ एक न्यूनकोण बनाते हुए किरण BZ खींचिए।
  6. BZ में से BB1 = B1B2 = B2B3 = B3B4 = B4B5 काटिए।
  7. B3C को मिलाइए।
  8. B5 से B5C’ || B3C रेखाखण्ड खींचिए जो BX को बिन्दु C’ पर प्रतिच्छेद करता है।
  9. C’ से C’A’ || CA एक रेखाखण्ड खींचिए जो BY को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः यही ∆A’BC अभीष्ट समकोण त्रिभुज है जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 53 गुनी हैं।
रचना का औचित्य : चूँकि ∆A’BC’ में AC || A’C’ [रचना से]
⇒ ABAB=CBCB …(1) [समरूप त्रिभुजों के प्रगुण]
एवं ∆C’BB5 में, CB3 || C’B5 [रचना से]
⇒ CBCB=B5BB3B=53 …..(2) [समरूप त्रिभुजों के प्रगुण]
⇒ ABAB=CBCB=53 [समीकरण (1) एवं (2) से]

MP Board Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.2

निम्न में से प्रत्येक में रचना का औचित्य दीजिए।

प्रश्न 1.
6 cm त्रिज्या का एक वृत्त खींचिए। केन्द्र से 10 cm की दूरी पर स्थिर एक बिन्दु से वृत्त पर स्पर्श रेखा युग्म की रचना कीजिए और उनकी लम्बाइयाँ मापिए।
हल :

रचना के पद :

  1. रेखाखण्ड OP = 10 cm खींचिए।
  2. O की केन्द्र लेकर 6 cm की त्रिज्या से एक वृत्त खींचिए।
  3. OP का लम्ब अर्द्धक XY खींचिए – जो OP को बिन्दु Q पर समद्विभाजित करता है।
  4. Q को केन्द्र लेकर OQ = QP = 102 = 5 cm की त्रिज्या लेकर एक वृत्त खींचिए जो पूर्व वृत्त को R एवं S बिन्दुओं पर प्रतिच्छेद करता है।
  5. PR एवं PS को मिलाइए।

अतः यही PR एवं PS अभीष्ट स्पर्श रेखा युग्म है जिनका मापन करने पर प्रत्येक की लम्बाई 8 cm है।
रचना का औचित्य : ∆PRO में चूँकि ∠ORP = 90° [अर्द्धवृत्त का कोण है]
जो कि त्रिज्या OR के सिरे पर बना कोण है।
अतः PR और इसी प्रकार PS स्पर्श रेखायुग्म है, क्योंकि स्पर्श रेखा और स्पर्श बिन्दु से जाने वाली त्रिज्या के बीच कोण एक समकोण (90°) होता है।

प्रश्न 2.
4 cm त्रिज्या के एक वृत्त पर 6 cm त्रिज्या के एक संकेन्द्रीय वृत्त के किसी बिन्दु से एक स्पर्श रेखा की रचना कीजिए और उसकी लम्बाई मापिए। परिकलन से इस माप की जाँच भी कीजिए।
हल :

  1. O को केन्द्र लेकर दो वृत्त क्रमश: 6 cm एवं 4 cm त्रिज्या के खींचे।
  2. 6 cm त्रिज्या वाले वृत्त पर कोई बिन्दु P लेकर OP को मिलाइए।
  3. OP का लम्ब समद्विभाजक XY खींचिए जो OP को बिन्दु M पर प्रतिच्छेद करता है।
  4. M को केन्द्र लेकर MO = MP के बराबर त्रिज्या लेकर एक वृत्त खींचिए जो 4 cm त्रिज्या वाले वृत्त को N बिन्दु पर प्रतिच्छेद करता है।
  5. PN को मिलाइए जो बाह्य वृत्त को Q पर प्रतिच्छेद करती है।

यही PN अभीष्ट स्पर्श रेखा है जिसकी लम्बाई मापन करने पर 4-4 cm (लगभग) आती है। परिकलन करने पर समकोण ∆ONP में पाइथागोरस प्रमेय से,
PN = (OP)2(ON)2−−−−−−−−−−−−−√=(6)2(4)2−−−−−−−−−√=3616−−−−−−√=20−−√ = 4.4 cm लगभग
अतः अभीष्ट स्पर्श रेखा PN है जिसकी लम्बाई मापन करने पर 4.4 cm (लगभग) एवं परिकलन करने पर भी 4.4 cm (लगभग)
रचना का औचित्य : चूँकि ∠ONP = 90° [अर्द्धवृत्त का कोण है]
जो ON त्रिज्या के सिरे पर PN रेखा द्वारा अन्तरित है।
अतः PN, ON त्रिज्या वाले वृत्त की स्पर्श रेखा है।

प्रश्न 3.
3 cm त्रिज्या का एक वृत्त खींचिए। इसके किसी बढ़ाए गए व्यास पर केन्द्र से 7 cm की दूरी पर स्थित दो बिन्दु P और Q लीजिए। इन दोनों बिन्दुओं से वृत्त पर स्पर्श रेखाएँ खींचिए।
हल :

  1. O को केन्द्र मानकर 3 cm की त्रिज्या का एक वृत्त खींचिए।
  2. वृत्त के एक व्यास MON को दोनों ओर क्रमशः बिन्दु P एवं Q तक इस प्रकार बढ़ाइए कि OP = OQ = 7 cm हो।
  3. OP एवं OQ को क्रमशः बिन्दु R और S बिन्दुओं पर समद्विभाजित कीजिए।
  4. R एवं S को केन्द्र लेकर क्रमश: RP = RO एवं SQ = SO की त्रिज्याओं से वृत्त खींचिए जो पूर्व वृत्त को क्रमश: A और B तथा C और D बिन्दुओं पर प्रतिच्छेद करते हैं।
  5. PA, PB तथा QC, QD को मिलाइए।

अतः यही PA, PB, QC एवं QD अभीष्ट स्पर्श रेखाएँ हैं।
रचना का औचित्य : चूँकि PA, PB, QC एवं QD क्रमशः वृत्त की त्रिज्याओं OA, OB, OC एवं OD के सिरों क्रमश: A, B, C एवं D पर समकोण (90°) बनाते हैं क्योंकि ये अर्द्धवृत्तों के कोण हैं।
अत: PA, PB, QC और QD वृत्त की स्पर्श रेखाएँ हैं।

प्रश्न 4.
5 cm त्रिज्या के एक वृत्त पर ऐसी दो स्पर्श रेखाएँ खींचिए, जो परस्पर 60° के कोण पर झुकी हों।
हल :

चूँकि हम जानते हैं कि बाह्य बिन्दु से वृत्त पर खींची गयी स्पर्श रेखाओं के स्पर्श बिन्दुओं से जाने वाली त्रिज्याएँ केन्द्र पर जो कोण बनाती है वह स्पर्श रेखाओं के मध्य बनने वाले कोण का सम्पूरक होता है।
⇒ स्पर्श बिन्दु से जाने वाली त्रिज्याओं के मध्य कोण = 180° – 60° = 120°
रचना के पद :

  1. O को केन्द्र लेकर 5 cm त्रिज्या से एक वृत्त खींचिए।
  2. वृत्त भी एक त्रिज्या OP खींचिए तथा OP के बिन्दु O पर ∠POQ = 120° का कोण बनाती हुई दूसरी त्रिज्या OQ खींचिए।
  3. OP एवं OQ के बिन्दु P एवं Q पर क्रमश: ∠OPR = ∠OQR = 90° का कोण बनाते हुए रेखाएँ PR एवं QR खींचिए जो परस्पर बिन्दु R पर प्रतिच्छेद करती है।

अतः अभीष्ट स्पर्श रेखाएँ RP एवं RQ हैं।
उत्तर रचना का औचित्य : चूँकि RP एवं RQ क्रमशः त्रिज्याओं OP एवं OQ के अन्त्यः बिन्दुओं P एवं Q पर लम्ब हैं (रचना से)। अत: RP एवं RQ स्पर्श रेखाएँ हैं तथा उनके बीच का कोण 60° है (कारण उपरोक्त)।

प्रश्न 5.
8 cm लम्बा एक रेखाखण्ड AB खींचिए। A को केन्द्र मानकर 4 cm त्रिज्या का एक वृत्त तथा B को केन्द्र लेकर 3 cm त्रिज्या का एक अन्य वृत्त खींचिए। प्रत्येक वृत्त पर दूसरे वृत्त
के केन्द्र से स्पर्श रेखाओं की रचना कीजिए।
हल :

रचना के चरण :

  1. एक रेखाखण्ड AB = 8 cm खींचिए।
  2. A को केन्द्र लेकर 4 cm की त्रिज्या से तथा B को केन्द्र लेकर 3 cm की त्रिज्या से दो वृत्त खींचिए।
  3. AB का लम्ब समद्विभाजक XY खींचिए जो AB को बिन्दु O पर प्रतिच्छेद करता है।
  4. O को केन्द्र लेकर OA = OB की लम्बाई के बराबर त्रिज्या से एक वृत्त खींचिए जो वृत्तों को क्रमश: P एवं Q तथा R एवं S पर प्रतिच्छेद करता है।
  5. BP, BQ, AR एवं AS को मिलाइए।

अत: BP, BQ, AR एवं AS अभीष्ट स्पर्श रेखाएँ हैं।
रचना का औचित्य : प्रत्येक स्पर्श रेखा संगत वृत्त के स्पर्श बिन्दु पर खींची गयी त्रिज्या पर लम्ब है क्योंकि ये कोण अर्द्धवृत्त के कोण हैं। अतः ये रेखाएँ स्पर्श रेखाएँ हैं।

प्रश्न 6.
माना ABC एक समकोण त्रिभुज है जिसमें AB = 6 cm, BC = 8 cm तथा ∠B = 90° हैं। B से AC पर BD लम्ब है। बिन्दुओं B, C, D से होकर जाने वाला एक वृत्त खींचा गया है। A से इस वृत्त पर स्पर्श रेखा की रचना कीजिए।
हल :

मान लीजिए कि ∆ABC एक दिया हुआ समकोण त्रिभुज है जिसमें ∠B = 90°, AB = 6 cm, BC = 8 cm तथा B से AC पर डाला गया लम्ब BD है।
बिन्दुओं B, C, D से होकर एक वृत्त खींचा गया है।
चूँकि वृत्त समकोण ∆BDC का परिवृत्त है, अत: BC •इसका व्यास है और चूँकि AB त्रिज्या OB के बिन्दु B पर लम्ब है इसलिए AB इस वृत्त की एक स्पर्श रेखा है।
A से इस वृत्त पर एक अन्य स्पर्श रेखा खींचनी है और बाह्य बिन्दु से वृत्त पर खींची गयी दोनों स्पर्श रेखाएँ बराबर होती है।
रचना : A को केन्द्र लेकर AB = 6 cm के बराबर त्रिज्या से एक चाप खींचा जो वृत्त को P बिन्दु पर प्रतिच्छेद करता है। AP को मिलाइए।
अतः, AB एवं AP अभीष्ट स्पर्श रेखाएँ है।
रचना का औचित्य : स्वयं हल में स्पष्ट है।

प्रश्न 7.
किसी चूड़ी की सहायता से एक वृत्त खींचिए। वृत्त के बाहर एक बिन्दु लीजिए। इस बिन्दु से वृत्त पर स्पर्श रेखाओं की रचना कीजिए। (2019)
हल :

रचना के पद :

  1. चूड़ी की सहायता से एक वृत्त खींचा।
  2. वृत्त का केन्द्र O उचित विधि से ज्ञात PK किया।
  3. वृत्त के बाहर कोई बिन्दु P लिया और OP को मिलाया।
  4. OP का लम्ब-अर्द्धक XY खींचा जो OP को बिन्दु M पर प्रतिच्छेद करता है।
  5. M को केन्द्र लेकर MP = MO की त्रिज्या से एक वृत्त खींचा जो दिए हुए वृत्त को क्रमशः Q और R बिन्दुओं पर प्रतिच्छेद करता है।
  6. PQ और PR को मिलाइए।

अत: PQ एवं PR अभीष्ट स्पर्श रेखाएँ हैं।
उत्तर रचना का औचित्य : PQ और PR क्रमशः OQ एवं OR त्रिज्याओं के साथ समकोण बनाती हैं क्योंकि अर्द्धवृत्त के कोण हैं।

MP Board Class 10th Maths Solutions Chapter 11 रचनाएँ Additional Questions

MP Board Class 10th Maths Chapter 11 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 10th Maths Chapter 11 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
एक त्रिभुज ABC की रचना कीजिए जिसमें AB = 6 cm, ∠A = 30° तथा ∠B = 60° हो। एक अन्य त्रिभुज AB’C’ की रचना कीजिए जो कि त्रिभुज ABC के समरूप हो तथा जिसका आधार AB’ = 8 cm हो।
हल :

रचना के पद :

  1. एक किरण AP खींचिए।
  2. किरण AP से AB = 6 cm का रेखाखण्ड काटिए।
  3. बिन्दु A पर ∠QAP = 30° का कोण बनाते हुए किरण AQ खींचिए।
  4. बिन्दु B पर ∠ABR = 60° का कोण बनाते हुए किरण BR खींचिए जो किरण AQ को बिन्दु C पर प्रतिच्छेद करती है। यही अभीष्ट ∆ABC है।
  5. किरण AP से AB’ = 8 cm का रेखाखण्ड काटिए।
  6. B’ पर ∠AB’S = 60° का कोण बनाते हुए एक किरण B’S खींचिए जो किरण AQ को बिन्दु C’ पर प्रतिच्छेद करती है। यही ∆AB’C’ अभीष्ट त्रिभुज है।

प्रश्न 2.
एक त्रिभुज ABC की रचना कीजिए जिसमें भुजा BC = 7 cm, ∠B = 45°, ∠A = 105° हों। तब एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ ∆ABC की भुजाओं की 34 गुनी हों।
हल :

एक त्रिभुज ABC की रचना करनी है जिसमें भुजा BC = 7 cm, ∠B = 45° एवं ∠A = 105°; अतः ∠C = 180° – (45° + 105°) = 30° एक अन्य समरूप A की रचना भी करनी है जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 34 गुनी हैं।
रचना के पद :

  1. BC = 7 cm का एक रेखाखण्ड खींचिए।
  2. B पर ∠CBY = 45° का कोण बनाते हुए एक किरण BY खींचिए।
  3. C पर ∠BCZ = 30° का कोण बनाते हुए एक किरण CZ खींचिए जो किरण BY को बिन्दु A पर प्रतिच्छेद करती है। यही अभीष्ट त्रिभुज ABC है।
  4. रेखाखण्ड BC से BC’ = 34 BC काटिए।
  5. C’ से CT || CA एक किरण खींचिए जो किरण BY को बिन्दु A’ पर काटती है। यही ∆A’BC’ अभीष्ट त्रिभुज है।

प्रश्न 3.
4 cm त्रिज्या का एक वृत्त खींचिए। उस वृत्त पर दो स्पर्श रेखाएँ खींचिए जिनके बीच का कोण 60° का हो।
हल :

एक वृत्त (O, 4 cm) की रचना करके इस पर दो स्पर्श रेखाएँ PR एवं QR इस प्रकार खींचनी हैं कि ∠PRQ = 60°
चूँकि ∠XOP = ∠XOQ
= 90° – 30°
= 60°
रचना के पद :

  1. एक किरण OX खींचिए।
  2. O को केन्द्र लेकर 4 सेमी त्रिज्या का एक वृत्त खींचिए।
  3. OX के साथ ∠XOY = 60° का कोण बनाते हुए किरण OY तथा ∠XOZ = 60° का कोण बनाते हुए किरण OZ खींचिए जो वृत्त को क्रमश: P एवं Q बिन्दुओं पर प्रतिच्छेद करती हैं।
  4. बिन्दु P पर ∠OPT = 90° का कोण बनाते हुए किरण PT खींचिए जो किरण OX को बिन्दु R पर प्रतिच्छेद करती है।
  5. QR को मिलाइए। यही PR एवं QR अभीष्ट स्पर्श रेखाएँ हैं।

प्रश्न 4.
एक समचतुर्भुज ABCD दिया है जिसमें AB = 4 cm एवं ∠ABC = 60°. इस समचतुर्भुज को दो त्रिभुजों ABC एवं ADC में विभाजित कीजिए। त्रिभुज ABC के समरूप त्रिभुज AB’C की संरचना कीजिए जिसका स्केल गुणक 23 है। CD के समान्तर एक रेखाखण्ड C’D’ खींचिए जहाँ D’ रेखाखण्ड AD पर प्रतिच्छेद करता है। क्या AB’C’D’ एक समचतुर्भुज है।
हल :

  1. एक किरण AX खींचिए।
  2. AX किरण से AB = 4 cm की त्रिज्या का एक चाप खींचिए जो किरण AX को बिन्दु B पर काटता है।
  3. बिन्दु B पर ∠ABY = 60° का कोण बनाते हुए किरण BY खींचिए।
  4. किरण BY से BC = 4 cm की त्रिज्या का एक चाप खींचिए, जो BY को बिन्दु C पर प्रतिच्छेद करता है।
  5. बिन्दु A एवं C को केन्द्र लेकर 4 cm त्रिज्या के चाप खीचिएा जो परस्पर बिन्दु D पर प्रतिच्छेद करते हैं।
  6. बिन्दु D को बिन्दु A एवं C से मिलाइए।
  7. AC को मिलाइए। इस प्रकार दिए हुए समचतुर्भुज ABCD दो त्रिभुजों ABC एवं ADC में विभाजित हो जाता है।
  8. AB के बिन्दु B’ पर AB’ : AB = 2 : 3 अर्थात् AB’ : B’B = 2 : 1 के अनुपात में विभाजित कीजिए।
  9. B’ से B’C’ || BC रेखाखण्ड खींचिए जो AC को C’ पर प्रतिच्छेद करता है। यही AB’C’ अभीष्ट समरूप त्रिभुज है।
  10. अब C’D’ || CD रेखाखण्ड खींचिए जो AD को बिन्दु D’ पर प्रतिच्छेद करता है।

हाँ ₹AB’C’D’ एक समचतुर्भुज है, क्योंक AB’ = B’C’ = CD’ = D’A = 23
ABAB=BCBC=CDCD=DADA=23
AB = BC = CD = DA . [समचतुर्भुज की भुजाएँ]
AB’ = B’C’ = C’D’ = D’A.

प्रश्न 5.
एक समान्तर चतुर्भुज ABCD की रचना कीजिए जिसमें BC = 5 cm, AB = 3 cm एवं ∠ABC = 60°। इसको विकर्ण BD द्वारा ∆BCD एवं ∆ABD में विभाजित कीजिए। ∆BDC के समरूप ∆BD’C’ की रचना स्केल गुणक 43 के साथ कीजिए। DA के समान्तर एक रेखाखण्ड D’A’ खींचिए, जहाँ A’ भुजा BA को बढ़ाने पर उस पर स्थित हो। क्या A’BC’D’ एक समान्तर चतुर्भुज है?
हल :

  1. एक किरण BP खींचिए।
  2. किरण BP में से BC = 5 cm का रेखाखण्ड काटिए।
  3. B पर CBQ = 60° का कोण बनाते हुए एक किरण BQ खींचिए।
  4. BQ में से BA = 3 cm का रेखाखण्ड काटिए।
  5. बिन्दु A से 5 cm एवं बिन्दु C से 3 cm की त्रिज्याएँ लेकर चाप कीजिए जो परस्पर बिन्दु D पर प्रतिच्छेद करते हैं। AD एवं CD को मिलाइए। किरण BDR खींचिए।
    यही ABCD अभीष्ट समान्तर चतुर्भुज एवं ∆BCD तथा ∆BAD उसके दो विभाजन हैं।
  6. किरण BP में से BC’ : BC = 4 : 3 में रेखाखण्ड काटिए।
  7. C’D’ || CD रेखाखण्ड खींचिए जो किरण BR को बिन्दु D’ पर प्रतिच्छेद करता है।
    यही ∆BC’D’, ∆BCD के समरूप है अभीष्ट त्रिभुज है।।
  8. D’A’ || DA खींचिए जो किरण BQ को बिन्दु A’ पर प्रतिच्छेद करती है।
    हाँ ₹A’BC’D’ एक समान्तर चतुर्भुज है क्योंक A’B || D’C’ एवं A’D’ || BC’.

प्रश्न 6.
3 cm एवं 5 cm त्रिज्याओं के दो संकेन्द्रीय वृत्त खींचिए। बाह्य वृत्त पर कोई बिन्दु लेकर अन्तः वृत्त पर उससे दो स्पर्श रेखाएँ खींचिए। एक स्पर्श रेखा की लम्बाई का मापन कीजिए तथा वास्तविक गणना द्वारा उसकी पुष्टि कीजिए।
हल :

रचना के चरण :

  1. O को केन्द्र लेकर क्रमश: 3 cm एवं 5 cm की त्रिज्याएँ लेकर दो संकेन्द्री वृत्त खींचिए।
  2. बाह्य वृत्त पर कोई बिन्दु P लीजिए और PO को मिलाइए।
  3. PO का मध्य-बिन्दु S ज्ञात कीजिए।
  4. S को केन्द्र लेकर SO की दूरी के बराबर त्रिज्या लेकर एक वृत्त खींचिए जो अन्त:वृत्त को Q एवं R बिन्दुओं पर प्रतिच्छेद करता है।
  5. PR एवं PQ को मिलाइए। यही PR एवं PQ अभीष्ट स्पर्श रेखाएँ हैं।
  6. PQ को मापिए। इसका मान मापने पर = 4 cm आता है।
  7. OQ को मिलाइए। ∠OQP समकोण है। [अर्द्धवृत्त का कोण]

अब समकोण ∆OQP में पाइथागोरस प्रमेय से,
PQ = OP2OQ2−−−−−−−−−−√=(5)2(3)2−−−−−−−−−√=259−−−−−√=16−−√
= 4 cm
[जहाँ OP = 5 एवं OQ = 3 त्रिज्याएँ दी हैं।]
अतः स्पर्श रेखा PQ की अभीष्ट लम्बाई = 4 cm है जिसकी वास्तविक गणना द्वारा पुष्टि होती हैं।

प्रश्न 7.
एक ∆ABC की रचना कीजिए जिसमें AB = 5 cm, BC = 6 cm एवं ∠ABC = 60° ∆ABC के समरूप स्केल गुणक 57 के साथ एक अन्य त्रिभुज की रचना कीजिए।
हल :

  1. एक किरण BX खींचिए तथा BC = 6 cm का रेखाखण्ड काटिए।
  2. बिन्दु B पर ∠CBY = 60° का कोण बनाते हुए एक किरण BY खींचिए।
  3. किरण BY में से BA = 5 cm का रेखाखण्ड काटिए जो किरण BY को बिन्दु A पर प्रतिच्छेद करता है।
  4. AC को मिलाइए।
    यही ∆ABC अभीष्ट त्रिभुज है।
  5. BC को BC’ : BC = 5 : 7 अर्थात BC’ : C’C = 5 : 2 के अनुपात में विभाजित कीजिए।
  6. C’ से C’A’ || CA रेखाखण्ड खींचिए जो BY को बिन्दु A’ पर प्रतिच्छेद करता है।
    यही ∆A’BC’ ~ ∆ABC अभीष्ट त्रिभुज है जिसका स्केल गुणक 57 है।

प्रश्न 8.
एक त्रिभुज ABC की रचना कीजिए जिसमें AB = 4 cm, BC = 6 cm एवं AC = 9 cm. ∆ABC के समरूप स्केल गुणक 32 के साथ एक त्रिभुज की रचना कीजिए। अपनी रचना की पुष्टि कीजिए। क्या दोनों त्रिभुज सर्वांगसम हैं जबकि तीनों कोण एवं दो भुजाएँ दोनों त्रिभुजों में बराबर हैं।
हल :

  1. एक किरण BX खींचिए।
  2. किरण BX में से एक रेखाखण्ड BC = 6 cm काटिए।
  3. B को केन्द्र लेकर AB = 4 cm एवं C को केन्द्र लेकर AC = 9 cm की त्रिज्याओं से चाप खींचिए जो एक-दूसरे को बिन्दु A पर प्रतिच्छेद करते हैं।
  4. BA को मिलाइए और Y तक बढ़ाइए तथा C को मिलाइए।
  5. BX किरण से एक रेखाखण्ड CC’ = 12 BC काटिए ताकि BC : CC’ = 2 : 1 अर्थात् BC’ : BC = 3 : 2 हो जाए।
  6. C’ से C’A’ || CA खींचिए जो किरण BY को बिन्दु A’ पर प्रतिच्छेद करती है।

यही ∆A’BC ~ ∆ABC है जिसका स्केल गुणक में 32 है पुष्टि ∆A’CC’ में AC || A’C’ तथा BC’/BC = 32 है।
∆A’BC’ ~ ∆ABC एवं स्केल गुणक 3/2 है। ΔABCΔABC क्योंकि संगत भुजाए बराबर नहीं बल्कि 3 : 2 के समानुपाती हैं।

प्रश्न 9.
एक समकोण ∆ABC की रचना कीजिए जिसमें BC = 12 cm, AB = 5 cm एवं ∠B = 90°.इस त्रिभुज के समरूप अन्य त्रिभुज की रचना कीजिए जिसका स्केल गुणक 23 हो। क्या नया त्रिभुज भी समकोण त्रिभुज है?
हल :

  1. एक किरण BX खींचिए।
  2. किरण BX से रेखाखण्ड BC = 12 cm काटिए।
  3. बिन्दु B पर ∠CBY = 90° का कोण बनाते हुए एक किरण BY खींचिए।
  4. किरण BY से AB = 5 cm का रेखाखण्ड काटिए।
  5. AC को मिलाइए।
  6. किरण BX से रेखाखण्ड BC’ = 23 BC काटिए।
  7. C’ से A’C’ || AC खींचिए।
    यही ∆A’BC’ ~ ∆ABC है जिसका स्केल गुणक 23 है तथा ∠A’BC’ भी समकोण हैं।

प्रश्न 10.
एक त्रिभुज ABC की रचना कीजिए जिसमें BC = 6 cm, CA = 5 cm एवं AB = 4 cm। इसके समरूप एक अन्य त्रिभुज की रचना कीजिए जिसका स्केल गुणक 53 है।
हल :

  1. एक किरण BX खींचिए।
  2. किरण BX में से BC = 6 cm का रेखाखण्ड काटिए।
  3. B को केन्द्र लेकर AB = 4 cm एवं C को केन्द्र लेकर AC = 5 cm की त्रिज्या लेकर चाप खींचिए जो परस्पर बिन्दु A पर प्रतिच्छेद करते हैं।
  4. CA को मिलाइए तथा BA की मिलाते हुए किरण BY खींचिए।
  5. किरण BX में से BC’ = 53BC रेखाखण्ड काटिए।
  6. बिन्दु C’ से A’C’ || AC खींचिए जो किरण BY को बिन्दु A’ पर प्रतिच्छेद करती है।
    यही ∆A’BC’ ~ ∆ABC अभीष्ट त्रिभुज है जिसका स्केल गुणक 53 है।

MP Board Class 10th Maths Chapter 11 लघु उत्तरीय प्रश्न

प्रश्न 1.
7 cm लम्बाई का एक रेखाखण्ड खींचिए। इस पर एक बिन्दु P इस प्रकार ज्ञात कीजिए कि यह रेखाखण्ड को 3 : 5 के अनुपात में विभाजित करता हो।
हल :

  1. एक रेखाखण्ड BC = 7 cm खींचिए।
  2. बिन्दु B पर नीचे की ओर न्यूनकोण ∠CBX = θ बनाते हुए किरण BX खींचिए।
  3. बिन्दु C पर ऊपर की ओर ∠BCY = θ बनाते हुए किरण CY खींचिए।
  4. किरण BX से BB1 = B1B2 = B2B3 रेखाखण्ड काटिए तथा किरण CY से BB1 = CC1 = C1C2 = C2C3 = C3C4 = C4C5 काटिए।
  5. B3 को C5 से मिलाइए जो BC को बिन्दु P पर प्रतिच्छेद करता है।
    यही अभीष्ट बिन्दु P है जो रेखाखण्ड को 3:5 के अनुपात में विभाजित करता है।

प्रश्न 2.
4 cm त्रिज्या वाले एक वृत्त पर उसके केन्द्र से 6 cm की दूरी पर स्थित बिन्दु से स्पर्श रेखाएँ खींचिए।
हल :

  1. रेखाखण्ड OP = 6 cm खींचिए।
  2. O को केन्द्र लेकर OM = 4 cm की त्रिज्या से एक वृत्त खींचिए जो OP को बिन्दु M पर प्रतिच्छेद करता है।
  3. OP को बिन्दु N पर समद्विभाजित कीजिए।
  4. N को केन्द्र लेकर ON के बराबर दूरी की त्रिज्या से एक वृत्त खींचिए जो पूर्व वृत्त को बिन्दु Q एवं R पर प्रतिच्छेद करता है।
  5. PQ एवं PR को मिलाइए। यही PQ एवं PR अभीष्ट स्पर्श रेखाएँ हैं।

MP Board Class 10th Maths Chapter 11 अति लघु उत्तरीय प्रश्न

निम्न में सत्य/असत्य कथन लिखिए तथा अपने उत्तर का कारण भी दीजिए।

प्रश्न 1.
एक रेखाखण्ड को ज्यामितीय विधि से दो रेखाखण्डों में (2 + √3) : (2 – √3) के अनुपात में विभाजित किया जा सकता है।
हल :
कथन असत्य है, क्योंकि (2 + √3) : (2 – √3) को सरल करने पर (7 + 4√3):1 प्राप्त होता है है जिसमें 1 तो धनात्मक पूर्णांक है लेकिन (7 + 4√3) धनात्मक पूर्णांक नहीं है।

प्रश्न 2.
ज्यामितीय विधि से यह सम्भव है कि किसी रेखाखण्ड को 3–√:13 के अनुपात में विभाजित किया जा सकता है।
हल :
कथन सत्य है, क्योंकि 3–√:13 अनुपात को सरल करने पर 3 : 1 का अनुपात होता है, जहाँ 3 एवं 1 दोनों धनपूर्णांक हैं।

प्रश्न 3.
एक ∆ABC के समरूप एक अन्य त्रिभुज में जिसकी भुजाएँ ∆ABC की संगत भुजाओं की 73 हों, BC के बिन्दु B पर A के विपरीत नीचे की ओर एक न्यूनकोण बनाते किरण BX खींचिए BX पर BC के सापेक्ष बिन्दु B1, B2, ….., B7 बराबर-बराबर दूरी अंकित कीजिए। B3 को C से मिलाइए तब एक रेखाखण्ड B6C’ || B3C खींचिए जहाँ C’BC को बढ़ाने पर उसको मिलता है। अन्त में रेखाखण्ड A’C’ || AC खींचिए।
हल :
कथन असत्य है, क्योंकि B7C’ || B3C खींचनी है।

प्रश्न 4.
3.5 cm त्रिज्या के एक वृत्त के केन्द्र से 3 cm की दूरी पर स्थित बिन्दु से वृत्त पर दो स्पर्श रेखाएँ खींची जा सकती हैं।
हल :
कथन असत्य है, क्योंकि बिन्दु वृत्त के अन्दर है जिससे वृत्त पर कोई भी स्पर्श रेखा नहीं खींची जा सकती।

प्रश्न 5.
किसी वृत्त पर परस्पर 170° पर झुकी दो स्पर्श रेखाएँ खींची जा सकती हैं।
हल :
कथन सत्य है, क्योंकि उनका झुकाव 180° से कम है।

MP Board Class 10th Maths Chapter 11 वस्तुनिष्ठ प्रश्न

MP Board Class 10th Maths Chapter 11 बहु-विकल्पीय प्रश्न

प्रश्न 1.
एक रेखाखण्ड AB को 5 : 7 के अनुपात में विभाजित करने के लिए पहले किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यूनकोण हो तथा बराबर दूरियों पर AX बिन्दु अंकित किए गए इस प्रकार कि इन बिन्दुओं की न्यूनतम संख्या होगी :
(a) 8
(b) 10
(c) 11
(d) 12.
उत्तर:
(d) 12.

प्रश्न 2.
एक रेखाखण्ड AB को 4 : 7 के अनुपात में विभाजित करने के लिए सबसे पहले ∠BAX एक न्यूनकोण बनाते हुए किरण AX खींचिए। फिर AX पर बराबर-बराबर दूरियों पर बिन्दु A1, A2, A3, …… अंकित किए। बिन्दु B को मिलाया जायेगा :
(a) A12
(b) A11
(c) A10
(d) A9
उत्तर:
(b) A11

प्रश्न 3.
एक रेखाखण्ड AB को 5 : 6 के अनुपात में विभाजित करने के लिए न्यूनकोण ∠BAX बनाते हुए किरण AX खींची एवं दूसरी किरण BY || AX खींची और AX एवं BY किरणों पर बराबर-बराबर दूरियों पर A1, A2, A3, …… एवं B1, B2, B3, …… क्रमशः अंकित किए तब मिलाए गए बिन्दु हैं :
(a) A5 एवं B6
(b) A6 एवं B5
(c) A4 एवं B4
(d) A5 एवं B4
उत्तर:
(a) A5 एवं B6

प्रश्न 4.
एक त्रिभुज ∆ABC के समरूप त्रिभुज जिसकी भुजाएँ क्रमशः ∆ABC की संगत भुजाओं की 37 हों, की रचना करने के लिए न्यूनकोण ∠CBX इस प्रकार बनाते हुए किरण BX खींचिए कि X बिन्दु BC के सापेक्ष AB के विपरीत दिशा में हो। तब किरण BX पर बराबर-बराबर दूरियों पर क्रमशः बिन्दु B1, B2, B3, …… अंकित किए और अगला चरण निम्न बिन्दुओं को जोड़ेगा :
(a) B10 से C
(b) B3 से C
(c) B7 से C
(d) B4 से C.
उत्तर:
(c) B7 से C

प्रश्न 5.
∆ABC के समरूप ऐसे त्रिभुज की रचना करने के लिए जिसकी भुजाएँ क्रमशः ∆ABC की संगत भुजाओं की 85 हो एक किरण BX इस प्रकार खींचिए कि ∠CBX.एक न्यूनकोण हो तथा X बिन्दु BC के सापेक्ष AB के विपरीत दिशा में स्थित हो तब किरण BX पर बराबर-बराबर दूरियों पर बिन्दु अंकित कीजिए। इन बिन्दुओं की न्यूनतम संख्या होगी :
(a) 5
(b) 8
(c) 13
(d) 3.
उत्तर:
(b) 8

प्रश्न 6.
एक वृत्त पर किसी बाह्य बिन्दु से दो स्पर्श रेखाएँ इस प्रकार खींचने के लिए कि उनके बीच कोण 60° हो। यह आवश्यक है कि उन दो त्रिज्याओं के अन्त्य बिन्दुओं पर स्पर्श रेखाएँ खींची जाएँ जिनके बीच का कोण है :
(a) 135°
(b) 90°
(c) 60°
(d) 12°.
उत्तर:
(d) 12°.

प्रश्न 7.
किसी रेखाखण्ड AB को p:q के अनुपात में (जहाँ p एवं q धनात्मक पूर्णांक हैं) विभाजित करने के लिए एक न्यूनकोण ∠BAX बनाते हुए एक किरण AX खींचिए तब किरण AX पर बराबर-बराबर दूरियों पर बिन्दु इस प्रकार अंकित करने होंगे कि उन बिन्दुओं की न्यूनतम संख्या m होगी:
(a) m > p + q
(b) m = p + q
(c) m = p + q – 1
(d) m = pq.
उत्तर:
(b) m = p + q

प्रश्न 8.
किसी वृत्त पर दो स्पर्श रेखाएँ जो परस्पर 35° पर झुकी हों, खींचने के लिए यह आश्यक है कि उन त्रिज्याओं के अन्त्य बिन्दुओं पर स्पर्श रेखाएँ खींची जाए जिनके बीच का कोण हो :
(a) 105°
(b) 70°
(c) 140°
(d) 145°.
उत्तर:
(d) 145°.

TENSE

Leave a Reply

Your email address will not be published. Required fields are marked *