MP Board Class 10th Maths | दो चरों वाले रैखिक समीकरण युग्म
MP Board Class 10th Maths | दो चरों वाले रैखिक समीकरण युग्म
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म
Ex 3.1
प्रश्न 1.
आफताब अपनी पुत्री से कहता है, “सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा।” (क्या यह मनोरंजक है?) इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।
हल:
मान लीजिए कि आफताब एवं उसकी पुत्री की वर्तमान आयु क्रमशः x वर्ष और y वर्ष है, तो
प्रश्नानुसार,
(x – 7) = 7 (y – 7)
⇒ x – 7 = 7y – 49
⇒ x – 7y + 42 = 0 …(1)
एवं (x + 3)= 3 (y + 3)
⇒ x + 3 = 3y + 9
⇒ x – 3y – 6 = 0 …(2)
यह स्थिति मनोरंजक भी हैतथा गणितीय तथ्यपरक है। इस स्थिति का बीजगणितीय निरूपण है।
x – 7y + 42 = 0 एवं x – 3y – 6 = 0
ग्राफीय निरूपण के लिए :
∵ x – 7y + 42 = 0 ….(1)
⇒ y = 42+x7
चूँकि x – 3y – 6 = 0 ….(2)
⇒ y = x−63
उपर्युक्त आकृति अभीष्ट ग्राफीय निरूपण है।
प्रश्न 2.
क्रिकेट टीम के एक कोच ने ₹ 3900 में 3 बल्ले तथा 6 गेंदें खरीदी। बाद में उसने एक और बल्ला तथा उसी प्रकार की 3 गेंदें ₹ 1300 में खरीदीं। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।
हल:
माना 1 बल्ले एवं 1 गेंद का मूल्य क्रमशः ₹ x तथा ₹ y है।
तो प्रश्नानुसार, 3x + 6y = 3900
⇒ x + 2y = 1300
एवं x + 3y = 1300 अतः दी गई स्थितियों का बीजगणितीय निरूपण है:
x + 2y = 1300 …(1) एवं x + 3y = 1300 …(2)
जहाँ x एवं y क्रमशः 1 बल्ले और 1 गेंद के मूल्य (₹ में) हैं।
ज्ञातव्य – उपर्युक्त स्थितियाँ व्यावहारिक रूप से अनुपयुक्त हैं। ये तभी सम्भव हो सकती हैं जबकि प्रत्येक गेंद मुफ्त में मिल रही हो अथवा मूल्य में परिवर्तन हुआ हो।
ज्यामितीय (ग्राफीय) निरूपण के लिएः
चूँकि x + 2y = 1300 ….(1)
⇒ y = 1300−x2
एवं x + 3y = 1300 ….(2)
⇒ y = 1300−x3
अतः उपर्युक्त आकृति दी गई स्थितियों का ज्यामितीय (ग्राफीय) निरूपण है।
प्रश्न 3.
2 kg सेब और 1 kg अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 kg सेब और 2 kg अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।
हल:
मान लीजिए कि 1 किलो सेब एवं 1 किलो अंगूर का मूल्य क्रमश: ₹ x एवं ₹ y है।
तो प्रश्नानुसार, 2x + y = 160 ….(1)
एवं 4x + 2y = 300
⇒ 2x + y = 150 ….(2)
अतः दी गई स्थितियों का बीजगणितीय निरूपण है:
2x + y = 160 ..(1) 2x + y = 150 …(2)
ज्यामितीय (ग्राफीय) निरूपण के लिए:
चूँकि 2x + y = 160 ….(1)
⇒ y = 160 – 2x
एवं 2x + y = 150 ….(2)
⇒ y = 150 – 2x
आकृति 3.3
अतः उपर्युक्त आकृति दी गई स्थितियों का ज्यामितीय (ग्राफीय) निरूपण है।
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
प्रश्न 1.
निम्न समस्याओं में रैखिक समीकरणों के युग्म बनाइए और उनके ग्राफीय विधि से हल ज्ञात कीजिए :
(i) कक्षा X के 10 विद्यार्थियों ने एक गणित की पहेली प्रतियोगिता में भाग लिया। यदि लड़कियों की संख्या लड़कों की संख्या से 4 अधिक हो तो प्रतियोगिता में भाग लिये ‘लड़कों और लड़कियों की संख्या ज्ञात कीजिए।
(ii) 5 पेंसिल तथा 7 कलमों का कुल मूल्य ₹ 50 है जबकि 7 पेंसिल तथा 5 कलमों का मूल्य ₹46 है। एक पेंसिल का मूल्य तथा एक कलम का मूल्य ज्ञात कीजिए।
हल:
(i) मान लीजिए प्रतियोगिता में भाग लेने वाले लड़कों एवं लड़कियों की संख्या क्रमशः x एवं y है तो प्रश्नानुसार,
x + y = 10 ….(1)
⇒ y = 10 – x
एवं y = x + 4 ….(2)
दोनों ग्राफ परस्पर बिन्दु P (3,7) पर प्रतिच्छेद करते हैं।
अत: लड़के एवं लड़कियों की अभीष्ट संख्या क्रमश: 3 एवं 7 है।
(ii) मान लीजिए पेंसिल एवं कलम का मूल्य क्रमशः ₹ x प्रति नग एवं ₹ y प्रति नग है। तो प्रश्नानुसार,
5x + 7y = 50 …(1)
⇒ y = 50−5x7
एवं 7x + 5y = 46 ….(2)
⇒ y = 46−7x5
आकृति : 3.5
चूँकि दोनों ग्राफ बिन्दु P (3,5) पर परस्पर प्रतिच्छेद करते हैं।
अतः पेंसिल एवं कलम के मूल्य क्रमश ₹ 3 प्रति नग एवं ₹ 5 प्रति नग है।
प्रश्न 2.
अनुपातों a1a2,b1b2 और c1c2 की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपित रेखाएँ एक बिन्दु पर प्रतिच्छेद करती हैं, समानान्तर हैं अथवा सम्पाती हैं।
(i) 5x – 4y + 8 = 0
7x + 6y – 9 = 0
(ii) 9x + 3y + 12 = 0
18x + 6y + 24 = 0
(iii) 6x – 3y + 10 = 0
2x – y + 9 = 0
हल:
(i) चूंकि 5x – 4y + 8 = 0 ….(1)
एवं 7x + 6y – 9 = 0 ….(2)
इसलिए a1a2=57,b1b2=−46 एवं c1c2=8−9=−89
⇒ a1a2≠b1b2
अतः समीकरण युग्म द्वारा निरूपित रेखाएँ एक बिन्दु पर प्रतिच्छेद करती हैं।
(ii) चूँकि 9x + 3y + 12 = 0 ….(1)
18x + 6y + 24 = 0 ….(2)
अतः समीकरण युग्म द्वारा निरूपित रेखाएँ सम्पाती हैं।
(iii) चूँकि 6x – 3y + 10 = 0 …. (1)
एवं 2x – y + 9 = 0 ….(2)
अत: समीकरण युग्म द्वारा निरूपित रेखाएँ समान्तर हैं।
प्रश्न 3.
अनुपातों a1a2,b1b2 और c1c2 की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरणों के युग्म
संगत हैं या असंगत:
(i) 3x + 2y = 5; 2x – 3y = 7
(ii) 2x – 3y = 8; 4x – 6y = 9
(iii) 32 x + 53 y = 7; 9x – 10y = 14
(iv) 5x – 3y = 11; -10x + by = – 22
(v) 43 x + 2y = 8 ; 2x + 3y = 12
हल:
(i) चूँकि 3x + 2y = 5 ⇒ 3x + 2y – 5 = 0 ….(1)
एवं 2x – 3y = 7 ⇒ 2x – 3y – 7 = 0 ….(2)
(अर्थात् रेखा युग्म प्रतिच्छेदी हैं)
अतः उक्त रैखिक समीकरणों के युग्म संगत हैं।
(ii) चूँकि 2x – 3y = 8 ⇒ 2x – 3y – 8 = 0 ….(i)
एवं 4x – 6y = 9 ⇒ 4x – 6y – 9 = 0 ….(2)
(अर्थात् रेखा युग्म समान्तर हैं)
अतः उक्त रैखिक समीकरणों के युग्म अंसगत हैं।
(iii) चूँकि 32x + 53 y = 7 ⇒ 9x + 10y – 42 = 0 ….(1)
एवं 9x – 10y = 14 ⇒ 9x – 10y – 14 = 0 ….(2)
(अर्थात् रेखा युग्म प्रतिच्छेदी हैं)
अतः उक्त रैखिक समीकरणों के युग्म संगत हैं।
(iv) चूँकि 5x – 3y = 11 ⇒ 5x – 3y – 11 = 0 ….(1)
एवं – 10x + 6y = – 22 ⇒ – 10x + 6y + 22 = 0 ….(2)
(अर्थात् रेखा युग्म सम्पाती हैं)
अतः उक्त रैखिक समीकरणों के युग्म संगत हैं।
(v) चूँकि 43x + 2y = 8 ⇒ 4x + 6y – 24 = 0 ….(1)
एवं 2x + 3y = 12 ⇒ 2x + 3y – 12 = 0 ….(2)
(अर्थात् रेखा युग्म संपाती हैं)
अत: उक्त रैखिक समीकरणों के युग्म संगत हैं।
प्रश्न 4.
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं। यदि संगत हैं, तो ग्राफीय विधि से हल कीजिए :
(i) x + y = 5; 2x + 2y = 10
(ii) x – y = 8; 3x – 3y = 16
(iii) 2x + y – 6 = 0; 4x – 2y – 4 = 0
(iv) 2x – 2y – 2 = 0; 4x – 4y – 5 = 0
हल:
(i) चूँकि x + y = 5 ⇒ x + y – 5 = 0 ….(1)
एवं 2x +2y = 10 ⇒ 2x + 2y – 10 = 0 ….(2)
(अर्थात् रेखा युग्म सम्पाती हैं)
अतः उक्त रैखिक समीकरणों के युग्म संगत हैं।
चूँकि रेखा युग्म सम्पाती हैं, इसलिए रेखा का प्रत्येक बिन्दु इसका हल होगा।
अतः उक्त रैखिक समीकरण के अनन्तशः अनेक हल होंगे।
(ii) चूंकि x – y = 8 ⇒ x – y – 8 = 0 ….(1)
एवं 3x – 3y = 16 ⇒ 3x – 3y – 16 = 0 ….(2)
(अर्थात् रेखा युग्म समानान्तर हैं)
अतः उक्त रैखिक समीकरणों का युग्म असंगत है।
(iii) चूँकि 2x + y – 6 = 0 ….(1)
एवं 4x – 2y – 4 = 0 ….(2)
(अर्थात् रेखा युग्म प्रतिच्छेदी हैं)
अतः उक्त रैखिक समीकरणों का युग्म संगत है।
उत्तर रैखिक समीकरण युग्म का ग्राफीय हल :
चूँकि 2x + y – 6 = 0 ….(1)
⇒ y = 6 – 2x
एवं 4x – 2y – 4 = 0 ….(2)
⇒ y = 2x – 2
अतः उक्त रैखिक समीकरण युग्म का अभीष्ट हल (2, 2) है अर्थात् x = 2 एवं y = 2.
(iv) चूँकि 2x – 2y – 2 = 0 ….(1)
एवं 4x – 4y – 5 = 0 ….(2)
(अर्थात् रेखा युग्म समान्तर हैं)
अतः उक्त रैखिक समीकरण युग्म असंगत है।
प्रश्न 5.
एक आयताकार बाग, जिसकी लम्बाई, चौड़ाई से 4 m अधिक है, का अर्ध परिमाप 36 m है। बाग की विमाएँ ज्ञात कीजिए।
हल:
मान लीजिए कि बाग की लम्बाई x m एवं चौड़ाई y m है।
तो प्रश्नानुसार, x = y + 4 …(1)
⇒ y = x – 4
एवं x + y = 36 ….(2)
⇒ y = 36 -x
चूँकि दोनों ग्राफ बिन्दु P(20, 16) पर प्रतिच्छेद करते हैं।
अतः आयताकार बाग की अभीष्ट विमाएँ 20 m एवं 16 m हैं।
प्रश्न 6.
एक रैखिक समीकरण 2x + 3y – 8 = 0 दी गई है। दो चरों में एक ऐसी और रैखिक समीकरण लिखिए ताकि प्राप्त युग्म का ज्यामितीय निरूपण जैसा कि
(i) प्रतिच्छेद करती रेखाएँ हों।
(ii) समानान्तर रेखाएँ हों।
(iii) सम्पाती रेखाएँ हों।
हल:
सम्भावित उत्तर:
(i) 3x + 2y – 7 = 0
(ii) 4x + 6y – 12 = 0
(iii) 4x + 6y – 16 = 0
ज्ञातव्य : इस प्रश्न के अनेक उत्तर हो सकते हैं।
प्रश्न 7.
समीकरणों x – y + 1 = 0 और 3x + 2y – 12 = 0 का ग्राफ खींचिए। x-अक्ष और इन रेखाओं से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए और त्रिभुजाकार पटल को छायांकित कीजिए।
हल:
चूँकि x – y + 1 = 0 …(1)
⇒ y = x + 1
एवं 3x + 2y – 12 = 0 ….(2)
⇒ y = 12−3x2
आकृति : 3.9
अतः दिए हुए रैखिक समीकरण रैखिक निरूपित रेखाओं एवं : अक्ष से बने अभीष्ट त्रिभुज PQR के शीर्षों के अभीष्ट निर्देशांक P (2, 3), Q(-1, 0) और R (4,0) हैं तथा प्राप्त त्रिभुजाकार पटल को उपर्युक्त आकृति में छायांकित किया गया है।
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
प्रश्न 1.
निम्न रैखिक समीकरण युग्मों को प्रतिस्थापन विधि से हल कीजिए :
(i) x + y = 14; x – y = 4
(ii) s – t = 3; s3 + t2 = 6
(iii) 3x – y = 3; 9x – 3y = 9
(iv) 0.2x + 0.3y = 1.33; 0.4x + 0.5y = 2.3
(v) 2–√ x + 3–√ y = 0; 3–√ x – 8–√ y = 0
(vi) 3x2 – 5y3 = -2; x3 + y2 = 136
हल:
(i) चूँकि
x + y = 14 ….(1)
एवं x – y = 4 ….(2)
समीकरण (2) से x का मान x = y + 4 समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं :
y + 4 + y = 14 ⇒ 2y = 10 ⇒ y = 102 = 5
एवं x = y + 4 = 5 + 4 = 9
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 9 एवं y = 5 है।
(ii) चूँकि s – t = 3 ….(1)
एवं s3 + t2 = 6 ….(2)
समीकरण (1) से s = t + 3 समीकरण (2) में प्रतिस्थापित करने पर हम पाते हैं :
t+33 + t2 = 6 ⇒ 2t + 6 + 3t = 36
⇒ 5 t = 30 ⇒ t = 305 = 6
एवं s = t + 3 = 6 + 3 = 9
अतः दत्त समीकरण युग्म का अभीष्ट हल s = 9 एवं t = 6 है।
(iii) चूँकि 3x – y = 3
एवं 9x – 3y = 9
समीकरण (1) से y = 3x – 3 समीकरण (2) में प्रतिस्थापित करने पर हम पाते हैं :
9x – 3 (3x – 3) = 9 ⇒ 9x – 9x + 9 = 9
⇒ 9 = 9 जो x से रहित समीकरण है
इसलिए x के सभी मानों के लिए सत्य है।
अतः उक्त समीकरण युग्म के अभीष्ट हल अनन्तशः अनेक हैं :
(iv) चूंकि 0.2x + 0.3y = 1.3 ….(1)
एवं 0.4x + 0.5y = 2.3 ….(2)
⇒ 2x + 3y = 13 ….(3)
[दोनों समीकरणों को 10 से गुणा करने पर]
एवं 4x + 5y = 23
समीकरण (3) से x = 13−3y2 समीकरण (4) में प्रतिस्थापित करने पर हम पाते हैं:
अतः उक्त समीकरण युग्म का अभीष्ट हल x = 2 एवं y = 3 है।
(v) चूँकि 2–√x + 3–√ y = 0 …(1)
एवं 3–√x – 8–√ y = 0 ….(2)
समीकरण (1) से x = =−3√2√ करण (2) में प्रतिस्थापित करने पर हम पाते हैं:
अतः उक्त समीकरण युग्म का अभीष्ट हल x = 0 एवं y = 0 है।
(vi) चूँकि 3x2 – 5y3 = -2 ….(1)
एवं x3 + y2 = 136 ….(2)
⇒ 9x – 10y = -12 ….(3)
[दोनों समीकरणों को 6 से गुणा करने पर]
एवं 2x + 3y = 13 ….(4)
समीकरण (4) से, x = 13−3y2 समीकरण (3) में प्रतिस्थापित करने पर हम पाते हैं:
अतः उक्त समीकरण युग्म का अभीष्ट हल x = 2 एवं y = 3 है।
प्रश्न 2.
2x + 3y = 11 और 2x – 4y = -24 को हल कीजिए और इससे ‘m’ का वह मान ज्ञात कीजिए जिसके लिए y = mx + 3 हो।
हल:
चूँकि 2x + 3y = 11 ….(1)
एवं 2x – 4y = – 24 ….(2)
समीकरण (2) से x = 2y – 12 समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं:
2 (2y – 12) + 3y = 11 ⇒ 4y – 24 + 3y = 11
⇒ 7y = 11 + 24 = 35 ⇒ y = 357 = 5
एवं x = 2y – 12 = 2 × 5 – 12 = 10 – 12 = -2
अत: दत्त समीकरणों का अभीष्ट हल x = -2 एवं y = 5 है।
अब चूँकि y = mx + 3
⇒ 5 = m (-2) + 3 (x एवं y के मान रखने पर)
⇒ 2 m = 3 – 5 = -2 ⇒ m = −22 = -1
अत: m का अभीष्ट मान = -1 है।
प्रश्न 3.
निम्न समस्याओं में रैखिक समीकरण युग्म बनाइए और उनके हल प्रतिस्थापन विधि द्वारा ज्ञात कीजिए :
(i) दो संख्याओं का अन्तर 26 है और एक संख्या दूसरी संख्या की तीन गुनी है। उन्हें ज्ञात कीजिए।
(ii) दो सम्पूरक कणों में बड़ा कोण छोटे कोण से 18 डिग्री अधिक है। उन्हें ज्ञात कीजिए।
(iii) एक क्रिकेट टीम के कोच ने 7 बल्ले तथा 6 गेंदें ₹ 3800 में खरीदीं। बाद में उसने 3 बल्ले तथा 5 गेंदें ₹ 1750 में खरीदीं। प्रत्येक बल्ले एवं प्रत्येक गेंद का मूल्य ज्ञात कीजिए।
(iv) एक नगर में टैक्सी के भाड़े में एक नियत भाड़े के अतिरिक्त चली गई दूरी पर भाड़ा सम्मिलित किया जाता है। 10 km दूरी के लिए भाड़ा ₹ 105 है, तथा 15 km दूरी के लिए भाड़ा ₹ 155 है। नियत भाड़ा तथा प्रति km भाड़ा क्या है? एक व्यक्ति को 25 km यात्रा करने के लिए कितना भाड़ा देना होगा?
(v) यदि किसी भिन्न के अंश और हर दोनों में 2 जोड़ दिया जाए, तो वह ” हो जाती है। यदि अंश और हर दोनों में 3 जोड़ दिया जाए तो वह – हो जाती है। वह भिन्न ज्ञात कीजिए।
(vi) पाँच वर्ष बाद जैकब की आयु उसके पुत्र की आयु से तीन गुनी हो जाएगी। पाँच वर्ष पूर्व जैकब की आयु उसके पुत्र की आयु से सात गुनी थी। उनकी वर्तमान आयु क्या है?
हल:
(i) मान लीजिए अभीष्ट संख्याएँ x एवं y हैं और x > y तो प्रश्नानुसार,
x – y = 26 …(1) एवं x = 3y …(2)
अब समीकरण (2) सेx का मान समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं:
3y – y = 26 ⇒ 2y = 26 ⇒ y = 262 = 13
एवं x = 3y = 3 × 13 = 39
अतः अभीष्ट संख्याएँ क्रमशः 39 एवं 13 हैं।
(ii) मान लीजिए कि दो अभीष्ट सम्पूरक कोण x एवं y हैं और x > y तो प्रश्नानुसार,
x + y = 180 ….(1) (सम्पूरक कोणों का योग = 180°)
एवं x – y = 18 ….(2)
समीकरण (2) से x = 18 + y समीकरण (1) में रखने पर हम पाते हैं :
18 + y + y = 180 ⇒ 2y = 180 – 18 = 162
⇒ y = 1622 = 81
एवं x = 18 + y = 18 + 81 = 99
अतः अभीष्ट कोण क्रमश: 99° एवं 81° हैं।
(iii) मान लीजिए एक बल्ले का मूल्य ₹x एवं एक गेंद का मूल्य ₹y है तो प्रश्नानुसार,
7x + 6y = 3800 …..(1)
एवं 3x + 5y = 1750 …..(2)
समीकरण (2) से x = 1750−5y3 समीकरण (1) में रखने पर,
अतः बल्ले एवं गेंद का अभीष्ट मूल्य क्रमशः ₹ 500 एवं ₹50 प्रति नग हैं।
(iv) मान लीजिए कि नियत भाड़ा ₹ x एवं प्रति km भाड़े की दर ₹ y है, तो प्रश्नानुसार,
x + 10y = 105 ….(1)
एवं x + 15y = 155 ….(2)
अब समीकरण (1) से x = 105 – 10y समीकरण (2) में प्रतिस्थापित करने पर,
105 – 10y + 15y = 155 ⇒ 10y + 15y = 155 – 105
⇒ 5y = 50 ⇒ y = 505 = ₹ 10
एवं x = 105 – 10y = 105 – 10 × 10 = 105 – 100 = ₹5
अतः अभीष्ट नियत भाड़ा ₹ 5 एवं प्रति km भाड़े की दर ₹10 है।
(v) मान लीजिए कि भिन्न का अभीष्ट अंश x एवं हर y है, तो अभीष्ट भिन्न = xy है।
अब प्रश्नानुसार, x+2y+2 = 911
⇒ 11x + 22 = 9y + 18
⇒ 11x – 9y = 18 – 22 = – 4 ….(1)
एवं x+3y+3 = 56
⇒ 6x + 18 = 5y + 15
⇒ 6x – 5y = 15 – 18 = -3
समीकरण (2) से x = 5y−36 समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं :
(vi) मान लीजिए जैकब की वर्तमान आयु x वर्ष एवं उसके पुत्र की वर्तमान आयु y वर्ष है
तो प्रश्नानुसार, (x + 5) = 3 (y + 5)
⇒ x – 3y = 15 – 5 = 10 ….(1)
एवं (x – 5) = 7 (y – 5)
⇒ x – 7y = – 35 + 5 = -30 ….(2)
समीकरण (2) से x = 7y – 30 समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं :
7y – 30 – 3y = 10
⇒ 7y – 3y = 10 + 30.
⇒ 4y = 40 ⇒ y = 404 = 10 वर्ष
एवं x = 7y – 30 = 7 × 10 – 30 = 70 – 30 = 40 वर्ष
अतः जैकब की अभीष्ट वर्तमान आयु = 40 वर्ष एवं उसके पुत्र की वर्तमान आयु = 10 वर्ष
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
प्रश्न 1.
निम्न समीकरणों के युग्म को विलोपन विधि तथा प्रतिस्थापन विधि से हल कीजिए। कौन-सी विधि अधिक उपयुक्त है?
(i) x + y = 5 और 2x – 3y = 4
(ii) 3x + 4y = 10 और 2x – 2y = 2
(iii) 3x – 5y – 4= 0 और 9x = 2y + 7
(iv) x2 + 2y3 = -1 और x – y3 = 3
हल:
(i) विलोपन विधि :
x का मान समीकरण (1) में रखने पर,
195 + y = 5 ⇒ y = 5 – 195 = 25−195 = 65
अत: समीकरण युग्म का अभीष्ट हल x = 195 एवं y = 65 है।
प्रतिस्थापान विधि:
समीकरण (1) से y = 5 – x समीकरण (2) में प्रतिस्थापित करने पर हम पाते हैं
2x – 3 (5 – x) = 4 ⇒ 2x – 15 + 3x = 4
⇒ 5x = 15 + 4 = 19 ⇒ x = 195
एवं y = 5 – x = 5 – 195 = 25−195 = 65
अत: समीकरण युग्म का अभीष्ट हल x = 195 एवं y = 65 हैं।
(ii) विलोपन विधि :
3x + 4y = 10 ….(1)
एवं 2x – 2y = 2 ….(2)
⇒ 4x – 4y = 4 (3) [समीकरण (2) × 2 से]
⇒ 7x = 14 [समीकरण (1) + समीकरण (3) से]
⇒ x = 14/7 = 2
x का मान समीकरण (1) में रखने पर,
2 × 3 + 4y = 10 ⇒ 4y = 10 – 6 = 4
y = 4/4 = 1
अतः समीकरण युग्म का अभीष्ट हल x = 2 एवं y = 1 है।
प्रतिस्थापन विधि :
समीकरण (2) से x = (y + 1) समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं –
3 (y + 1) +4y = 10 ⇒ 3y + 3 + 4y = 10
⇒ 7y = 10 – 3 = 7 ⇒ y = 77 = 1
एवं x = (y + 1) = 1 + 1 = 2
अत: समीकरण युग्म का अभीष्ट हल x = 2 एवं y = 1 है।
(iii) विलोपन विधि:
3x – 5y – 4 = 0 ⇒ 3x – 5y = 4 ….(1)
एवं 9x = 2y + 7 = 9x – 2y = 7 ….(2)
9x – 15y = 12 ….(3) [समीकरण (1) × 3 से]
⇒ 13y = -5 [समीकरण (2)- समीकरण (3) से]
⇒ y = −513
समीकरण (1) में y का मान रखने पर हम पाते हैं :
3x – 5 (−513) = 4
⇒ 39x + 25 = 52 ⇒ 39x = 52 – 25 = 27
⇒ x = 2739 = 913
अतः समीकरण युग्म का अभीष्ट हल x = 913 एवं y = −513 है।
प्रतिस्थापन विधि :
समीकरण (1) से x = 5y+43 समीकरण (2) में प्रतिस्थापित करने पर हम पाते हैं :
अत: समीकरण युग्म का अभीष्ट हल x = 913 एवं y = −513 है।
(iv) विलोपन विधि:
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 2 एवं y = -3 है।
प्रतिस्थापन विधि :
समीकरण (2) से x = y+93 समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं :
y का मान समीकरण (2) में रखने पर हम पाते हैं :
3x – (-3) = 9 ⇒ 3x = 9 – 3 = 6 ⇒ x = 63 = 2
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 2 एवं y = – 3 है।
ज्ञातव्य : कभी-कभी विलोपन विधि प्रतिस्थापन विधि से उपयुक्त एवं सुविधाजनक होती है और कभी-कभी इसका विलोम भी होता है और कभी-कभी कोई भी अन्तर नहीं पड़ता।
प्रश्न 2.
निम्न समस्याओं में रैखिक समीकरण के युग्म बनाइए और उनके हल (यदि उनका अस्तित्व हो) विलोपन विधि से ज्ञात कीजिए :
(i) यदि हम अंश में 1 जोड़ दें तथा हर में से 1 घटा दें तो भिन्न 1 में बदल जाती है। यदि हर में 1 जोड़ दें तो यह 12 हो जाती है। वह भिन्न क्या है?
(ii) पाँच वर्ष पूर्व नूरी की आयु सोनू की आयु की तीन गुनी थी। दस वर्ष पश्चात्, नूरी की आयु सोनू की आयु की दो गुनी हो जाएगी। नूरी और सोनू की आयु कितनी है?
(iii) दो अंकों की संख्या के अंकों का योग 9 है। इस संख्या का नौ गुना संख्या के अंकों को पलटने से बनी संख्या का दो गुना है। वह संख्या ज्ञात कीजिए।
(iv) मीना ₹ 2000 निकालने के लिए एक बैंक गई। उसने खजांची से ₹ 50 तथा ₹ 100 के नोट देने के लिए कहा। मीना ने कुल 25 नोट प्राप्त किए। ज्ञात कीजिए कि उसने ₹50 और ₹100 के कितने-कितने नोट प्राप्त किए? किराये पर पुस्तक देने वाले किसी पुस्तकालय का प्रथम तीन दिनों का एक नियत किराया है तथा उसके बाद प्रत्येक अतिरिक्त दिन का अलग किराया है। सरिता ने सात दिनों तक एक पुस्तकरखने के लिए ₹ 27 अदा किए जबकि सूसी ने एक पुस्तक पाँच दिनों तक रखने के लिए ₹ 21 अदा किए। नियत किराया तथा प्रत्येक अतिरिक्त दिन का किराया ज्ञात कीजिए।
हल:
(i) मान लीजिए अभीष्ट भिन्न का अंश x एवं हर y है, तो भिन्न का स्वरूप होगा xy
प्रश्नानुसार, x+1y−1 = 1 ⇒ x + 1 = y – 1 ⇒ x – y = – 2 ….(1)
एवं xy+1 = 12 ⇒ 2x = y + 1 ⇒ 2x – y = 1 ….(2)
⇒ [समीकरण (2) में से समीकरण (1) को घटाने पर]
x के मान को समीकरण (1) में रखने पर हम पाते हैं :
3 – y = – 2 ⇒ y = 3 + 2 = 5
अत: अभीष्ट भिन्न 35 होगी।
(ii) मान लीजिए नूरी की आयु x वर्ष एवं सोनू की आयु y वर्ष है।
तो प्रश्नानुसार, (x – 5) = 3 (y – 5) ⇒ x – 5 = 3y – 15
⇒ x – 3y = 5 – 15 = – 10
एवं (x + 10) = 2 (y + 10) ⇒ x + 10 = 2y + 20
⇒ x – 2y = 20 – 10 = 10 ….(2)
⇒ y = 20 [समीकरण (2) में से समीकरण (1) को घटाने पर]
एवं y का मान समीकरण (2) में रखने पर हम पाते हैं :
x – 2 (20) = 10 ⇒ x – 40 = 10
⇒ x = 40 + 10 = 50
अतः नूरी एवं सोनू की अभीष्ट वर्तमान आयु क्रमशः 50 वर्ष एवं 20 वर्ष है।
(iii) मान लीजिए संख्या का दहाई का अंक x एवं इकाई का अंक y है तो संख्या का मान होगा 10x + y अब प्रश्नानुसार,
x + y = 9 ….(1)
संख्या के अंकों को पलटने पर बनी नई संख्या का मान होगा 10y + x एवं प्रश्नानुसार अब
9 (10x +y) = 2 (10y +x),
⇒ 90x + 9y = 20y + 2x
⇒ 88x – 11y = 0 ⇒ 8x – y = 0 ….(2)
समीकरण (1) एवं समीकरण (2) को जोड़ने पर हम पाते हैं :
9x = 9 ⇒ x = 99 = 1
x का मान समीकरण (1) में रखने पर हम पाते हैं :
1 + y = 9 ⇒ y = 9 – 1 = 8
अतः अभीष्ट संख्या का मान = 10x + y = 10 × 1 + 8 = 10 + 8 = 18 है।
(iv) मान लीजिए मीना बैंक से ₹50 के नोट तथा ₹ 100 के नोट प्राप्त करती है, तो प्रश्नानुसार
x + y = 25 ….(1)
एवं 50x + 100y = 2000
⇒ x + 2y = 40 ….(2)
समीकरण (2) से समीकरण (1) को घटाने पर प्राप्त होता है :
y = 40 – 25 = 15
y का मान समीकरण (1) में रखने पर प्राप्त होता है :
x + 15 = 25 ⇒ x = 25 – 15 = 10
अत: ₹ 50 एवं ₹ 100 के नोटों की अभीष्ट संख्या क्रमश: 10 एवं 15 है।
(v) मान लीजिए पुस्तक का प्रथम तीन दिन तक का नियत किराया ₹x एवं शेष दिनों के लिए प्रतिदिन का किराया ₹y है तो प्रश्नानुसार
x + 4y = 27 ….(1)
[∵ अतिरिक्त दिन = 7 – 3 = 4]
एवं x + 2y = 21 ….(2)
[∵ अतिरिक्त दिन = 5 – 3 = 2]
⇒ 2y = 6 [समीकरण (1) – समीकरण (2) से]
⇒ y = 62 = 3
y का मान समीकरण (1) में रखने पर,
x + 4 (3) = 27 ⇒ x + 12 = 27
⇒ x = 27 – 12 = 15
अतः पुस्तक का प्रथम तीन दिनों तक अभीष्ट नियत किराया = ₹ 15 एवं प्रत्येक अतिरिक्त दिन का किराया = ₹ 3.
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
प्रश्न 1.
निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे वज-गुणन विधि से ज्ञात कीजिए:
(i) x – 3y – 3= 0; 3x – 9y – 2 = 0
(ii) 2x + y = 5; 3x + 2y = 8
(iii) 3x – 5y = 20; 6x – 10y = 40
(iv) x – 3y – 7= 0; 3x – 3y – 15 = 0
हल:
(i) चूंकि x – 3y – 3 = 0 ….(1)
एवं 3x – 9y – 2 = 0 ….(2)
अतः रैखिक समीकरण युग्म का कोई हल नहीं है।
(ii) चूँकि 2x + y = 5 ⇒ 2x + y – 5 = 0 ….(1)
एवं 3x + 2y = 8 ⇒ 3x + 2y – 8 = 0 ….(2)
अतः उक्त समीकरण युग्म का एक अद्वितीय हल है।
अब 2x + y – 5 = 0 ….(1)
3x + 2y – 8 = 0 ….(2)
वज्रगुणन विधि:
अतः रैखिक समीकरण युग्म का अभीष्ट हल x = 2 एवं y = 1 है।
(iii) चूंकि 3x – 5y = 20 ⇒ 3x – 5y – 20 = 0 ….(1)
6x – 10y = 40 ⇒ 6x – 10y – 40 = 0 ….(2)
अतः उक्त रैखिक समीकरण युग्म के अनन्तशः (अपरिमित) रूप से अनेक हल है।
(iv) चूंकि x – 3y – 7 = 0 ….(1)
एवं 3x – 3y – 15 = 0 ….(2)
अतः दत्त समीकरण युग्म का एक अद्वितीय हल है।
अब x – 3y – 7 = 0 ….(1)
3x – 3y – 15 = 0 ….(2)
वज्रगुणन विधि:
अतः उक्त रैखिक समीकरण युग्म का अभीष्ट हल x = 4 एवं y = -1 है।
प्रश्न 2.
(i) a और b के किन मानों के लिए निम्न रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
2x + 3y = 7
(a – b)x + (a + b)y = 3a + b – 2
(ii) k के किस मान के लिए, निम्न रैखिक समीकरणों के युग्म का कोई हल नहीं है?
3x + y = 1
(2k – 1)x + (k – 1)y = 2k + 1
हल:
(i) 2x + 3y = 7 ….(1)
(a – b)x + (a + b)y = 3a + b – 2 ….(2)
अपरिमित रूप से अनेक हल के लिए
2(a−b)=3a+b=73a+b−2
⇒ 7(a – b) = 2(3a + b – 2)
⇒ 7a – 7b = 6a + 2b – 4 ….(3)
⇒ a – 9h +4 = 0
एवं 7(a + b)3 (3a + b – 2)
⇒ 7a + 7b = 9a + 3b – 6
⇒ 2a – 4b – 6 = 0 ….(4)
समीकरण (3) और समीकरण (4) से वज्रगुणन विधि द्वारा
अतः a और b के अभीष्ट मान क्रमशः 5 एवं 1 हैं।
(ii) 3x + y = 1 ….(1)
(2k – 1)x + (k – 1)y = 2k + 1 ….(2)
चूँकि रैखिक समीकरणों के युग्म का कोई भी हल न होने की स्थिति में
अतः k का अभीष्ट मान = 2 है।
प्रश्न 3.
निम्न रैखिक समीकरणों के युग्म को प्रतिस्थापन एवं वज्रगुणन विधियों से हल कीजिए :
8x + 5y = 9; 3x + 2y = 4.
हल:
प्रतिस्थापन विधि:
8x + 5y = 9 ….(1)
3x + 2y = 4 ….(2)
चूँकि समीकरण (2) से y = 4−3x2 समीकरण (1) में प्रतिस्थापित करने पर हम पाते हैं:
8x + 5 (4−3x2) = 9
⇒ 16x + 20 – 15x = 18
⇒ 16x – 15x = 18 – 20
⇒ x = -2
x का मान समीकरण (1) में रखने पर प्राप्त होता है :
8 (-2) + 5y = 9
⇒ -16 + 5y = 9
⇒ 5y = 9 + 16 = 25
⇒ y = 255 = 5
अतः उक्त समीकरणों के युग्म का अभीष्ट हल x = -2 और y = 5 है।
अब वज्रगुणन विधि :
8x + 5y – 9 = 0 ….(1)
3x + 2y – 4 = 0 ….(2)
अतः उक्त रैखिक समीकरणों के युग्म का अभीष्ट हल x = – 2 एवं y = 5 है।
ज्ञातव्य : यहाँ पर दोनों ही विधियाँ उपयुक्त हैं वैसे यह व्यक्तिपरक और प्रश्नपरक होता है कि कहाँ कौन सी विधि अधिक उपयुक्त है।
प्रश्न 4.
निम्न समस्याओं में रैखिक समीकरणों के युग्म बनाइए और उनके हल (यदि उनका आस्तित्व हो) किसी बीजगणितीय विधि से ज्ञात कीजिए:
(i) एक छात्रावास के मासिक व्यय का एक भाग नियत है तथा शेष इस पर निर्भर करता है कि छात्र ने कितने दिन भोजन लिया है। जब एक विद्यार्थी A को, जो 20 दिन भोजन करता है, ₹1000 छात्रावास व्यय के लिए अदा करने पड़ते हैं, जबकि एक विद्यार्थी B को जो 26 दिन भोजन करता है, छात्रावास के व्यय के लिए ₹ 1180 अदा करने पड़ते हैं। नियत व्यय और प्रतिदिन के भोजन का मूल्य ज्ञात कीजिए।
(ii) एक भिन्न हो जाती है, जब उसके अंश में से 1 घटाया जाता है और वह न हो जाती है जब हर में 8 जोड़ दिया जाता है। वह भिन्न ज्ञात कीजिए।
(iii) यश ने एकटेस्ट में 40 अंक अर्जित किए, जब उसे प्रत्येक सही उत्तर पर 3 अंक मिले तथा अशुद्ध उत्तर पर 1 अंक की कटौती की गई। यदि उसे सही उत्तर पर 4 अंक मिलते तथा अशुद्ध उत्तर पर 2 अंक कटते तो यश 50 अंक अर्जित करता है। टेस्ट में कितने प्रश्न थे?
(iv) एक राजमार्ग पर दो स्थान A और B, 100 km की दूरी पर हैं। एक कार A से तथा दूसरी कार B से एक ही समय चलना प्रारम्भ करती हैं। यदि ये कारें भिन्न-भिन्न चालों से एक ही दिशा में चलती हैं, तो वे 5 घण्टे पश्चात् मिलती हैं। यदि ये एक-दूसरे की ओर चलती हैं, तो 1 घण्टे में मिलती हैं। दोनों कारों की चाल ज्ञात कीजिए।
(v) एक आयत का क्षेत्रफल 9 वर्ग इकाई कम हो जाता है, यदि उसकी लम्बाई 5 इकाई कम कर दी जाती है, और चौड़ाई 3 इकाई बढ़ा दी जाती है। यदि हम लम्बाई को 3 इकाई और चौड़ाई को 2 इकाई बढ़ा दें, तो क्षेत्रफल 67 वर्ग इकाई बढ़ जाता है। आयत की विमाएँ ज्ञात कीजिए।
हल:
(i) मान लीजिए कि छात्रावास का नियत व्यय ₹x तथा प्रतिदिन के भोजन का व्यय ₹y है, तो
प्रश्नानुसार,
x + 20y = 1000 ….(1)
x + 26y = 1180 ….(2)
⇒ 6y = 180 [समीकरण (2) – समीकरण (1) से]
⇒ y = 1806 = 30
y का मान समीकरण (1) में रखने पर
x + 20 × 30 = 1000
⇒ x + 600 = 1000
⇒ x = 1000 – 600 = 400
अतः अभीष्ट नियत व्यय = ₹ 400 एवं प्रतिदिन के भोजन का व्यय = ₹ 30 है।
(ii) मान लीजिए कि भिन्न का अंश x एवं हर y है, तो भिन्न का मान xy होगा।
अब प्रश्नानुसार, x−1y = 13 ⇒ 3x – 3 = y
⇒ 3x – y = 3 ….(1)
एवं xy+8 = 14 ⇒ 4x = y + 8
⇒ 4x – y = 8 ….(2)
⇒ x = 5 [समीकरण (2) – समीकरण (1) से]
x का मान समीकरण (1) में रखने पर,
3 × 5 – y = 3 ⇒ 15 – y = 3
⇒ y = 15 – 3 = 12
अतः भिन्न का अभीष्ट मान 512 है।
(iii) मान लीजिए कि यश ने x प्रश्नों के सही उत्तर दिए तथा y प्रश्नों के अशुद्ध उत्तर दिए। इस प्रकार टेस्ट में कुल प्रश्नों की संख्या = x + y
अब प्रश्नानुसार,
3x – y = 40 ….(1)
एवं 4x – 2y = 50 ….(2)
⇒ 6x – 2y = 80 ….(3)
समीकरण (3) में से समीकरण (2) को घटाने पर, [समीकरण (1) × 2 से]
2x = 30 ⇒ x = 302 = 15
x का मान समीकरण (1) में रखने पर,
3 × 15 – y = 40 ⇒ 45 – y = 40
⇒ y = 45 – 40 = 5
अब टेस्ट में कुल प्रश्नों की संख्या = x + y = 15 + 5 = 20
अतः टेस्ट में कुल प्रश्नों की अभीष्ट संख्या 20 है।
(iv) मान लीजिए, पहली कार की चाल x किमी/घण्टा तथा दूसरी कार की चाल किमी/घण्टा है। जब दोनों कारें एक ही दिशा में गति करें तो उनकी सापेक्षिक चाल = (x – y) किमी/घण्टा
तथा जब दोनों कारें एक-दूसरे की ओर गति करें तो उनकी सापेक्षिक चाल = (x + y) किमी/घण्टा
प्रश्नानुसार 100x−y = 5 तथा 100x+y = 1
⇒ x – y = 20 ….(1)
तो x + y = 100 ….(2)
समीकरण (1) व (2) को हल करने पर,
x = 60 व y = 40
अतः, पहली कार की चाल = 60 किमी/घण्टा तथा दूसरी कार की चाल = 40 किमी/घण्टा है।
(v) मान लीजिए आयत की विमाएँ क्रमशः लम्बाई = x इकाई एवं चौड़ाई = y इकाई, तो उसका क्षेत्रफल = xy वर्ग इकाई होगा।
अब प्रश्नानुसार,
(x – 5) × (y + 3) = xy – 9
⇒ xy + 3x – 5y – 15 = xy – 9
⇒ 3x – 5y = 15 – 9 = 6 ….(1)
एवं (x + 3) (y + 2) = xy + 67
⇒ xy + 2x + 3y + 6 = xy + 67
⇒ 2x + 3y = 67 – 6 = 61 ….(2)
समीकरण (1) से x = 5y+63 समीकरण (2) में रखने पर,
2(5y+63) + 3y = 61
⇒ 10y + 12 + 9y = 183
⇒ 19y = 171 ⇒ y = 17119 = 9
y का मान समीकरण (1) में रखने पर,
3x – 5 × 9 = 6 ⇒ 3x = 6 + 45 = 51
⇒ x = 513 = 17
अतः आयत की अभीष्ट विमाएँ क्रमशः 17 इकाई एवं 9 इकाई हैं।
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
प्रश्न 1.
निम्न समीकरणों के युग्मों को रैखिक समीकरणों के युग्म में बदल करके हल कीजिए :
हल:
(i) चूँकि 12x + 13y = 2 ….(1)
एवं 13x + 12y = 136 ….(2)
मान लीजिए कि 1x = s एवं 1y = t हो, तो
s2 + t3 = 2 ⇒ 3s + 2t = 12 ….(3)
एवं s3 + t2 = 136 ⇒ 2s + 3t = 13 ….(4)
समीकरण (3) से t = (12−3s2) = 13 समीकरण (4) में रखने पर,
2s + 3 (12−3s2) = 13
⇒ 4s + 36 -9s = 26 ⇒ -5s = 26 – 36 = -10
⇒ s = −10−5 = 2
s का मान समीकरण (3) में रखने पर,
3 × 2 + 2t = 12 ⇒ 2t = 12 – 6 = 6
⇒ t = 62 = 3
अब 1x = s = 2 ⇒ x = 12
एवं 1y = t = 3 ⇒ y = 13
अतः दत्त समीकरणों के युग्म का अभीष्ट हल x = 1 एवं y = 13 है।
s का मान समीकरण (1) में रखने पर,
अतः दत्त समीकरणों के युग्म का अभीष्ट हल x = 4 एवं y = 9 है।
(iii) चूंकि 4x + 3y = 14 ….(1)
मान लीजिए 3x – 4y = 23 ….(2)
मान लीजिए 1x = z तब
4z + 3y = 14 ….(3)
3z – 4y = 23 ….(4)
⇒ 16z + 12y = 56 ….(5) [समीकरण (3) × 4]
एवं 9z – 12y = 69 …..(6) [समीकरण (5) + समीकरण (6) से]
⇒ z = 12525 = 5
⇒ 1x = z = 5 ⇒ x = 15
x का मान समीकरण (1) में रखने पर,
4×51+3y=14⇒20+3y=14
⇒ 3y = 14 – 20 = -6
⇒ y = −63 = -2
अतः दत्त समीकरणों के युग्म का अभीष्ट हल x = 15 एवं y = – 2 है।
अब समीकरण (3) से t = 2 – 5s समीकरण (4) में रखने पर प्राप्त होता है :
अब s का मान समीकरण (3) में रखने पर,
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 4 एवं y = 5 है।
अब s का मान समीकरण (4) में रखने पर,
8 × 1 + 7t = 15
⇒ 7t = 15 – 8 = 7
⇒ t = 77 = 1
⇒ 1x t = 1 ⇒ x = 1
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 1 एवं y = 1 है।
(vi) चूंकि 6x + 3y = 6xy ⇒ 6y + 3x = 6 ….(1)
एवं 2x + 4y = 5xy ⇒ 2y + 4x = 5 ….(2) [दोनों समीकरणों को xy से भाग देने पर]
मान लीजिए 1y = s एवं 1x = t
⇒ 6s + 3t = 6 ….(3)
2s + 4t = 5 ….(4)
⇒ 6s + 12t = 15 ….(5) [समीकरण (4) × 3 से]
⇒ 9t = 9 ⇒ t = 99 = 1 [समीकरण (5) – समीकरण (3) से]
⇒ 1x = t = 1 ⇒ x = 1
[∵ 1x = t माना है]
t का मान समीकरण (3) में रखने पर,
6s + 3 × 1 = 6 ⇒ 6s = 6 – 3 = 3
⇒ s = 36 = 12
⇒ 1y = s = 12 ⇒ y = 2
अब दत्त समीकरण युग्म का अभीष्ट हल x = 1 एवं y = 2 है।
(vii) चूंकि
10x+y + 2x−y = 4 ….(1)
एवं 15x+y−5x−y=−2 ….(2)
मान लीजिए 1x+y = s एवं 1x−y = t
⇒ 10s + 2t = 4 ….(3)
एवं 15s – 5t = -2 ….(4)
⇒ 30s + 6t = 12 …..(5) [समीकरण (3) × 3 से]
t का मान समीकरण (3) में रखने पर,
10s + 2 × 1 = 4
⇒ 10s = 4 – 2 = 2
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 3 एवंy = 2 है।
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 1 एवं y = 1 है।
प्रश्न 2.
निम्न समस्याओं को रैखिक समीकरण युग्म के रूप में व्यक्त कीजिए और फिर उनके हल ज्ञात कीजिए :
(i) रितु धारा के अनुकूल 2 घण्टे में 20 km तैर सकती है और धारा के प्रतिकूल 2 घण्टे में 4km तैर सकती है। उसकी स्थिर जल में तैरने की चाल तथा धारा की चाल ज्ञात कीजिए।
(ii) 2 महिलाएँ एवं 5 पुरुष एक कसीदे के काम को साथ-साथ 4 दिन में पूरा कर सकते हैं जबकि 3 महिलाएँ एवं 6 पुरुष इसको 3 दिन में पूरा कर सकती हैं। ज्ञात कीजिए कि इसी कार्य को करने में एक अकेली महिला कितना समय लेगी। पुनः इसी कार्य को करने में एक पुरुष कितना समय लेगा ?
(iii) रूही 300 km दूरी पर स्थित अपने घर जाने के लिए कुछ दूरी रेलगाड़ी द्वारा तथा कुछ दूरी बस द्वारा तय करती है। यदि वह 60 km रेलगाड़ी द्वारा तथा शेष बस द्वारा यात्रा करती है, तो उसे 4 घण्टे लगते हैं। यदि वह 100 km रेलगाड़ी से तथा शेष बस से यात्रा करे, तो उसे 10 मिनट अधिक लगते हैं। रेलगाड़ी एवं बस की क्रमश: चाल ज्ञात कीजिए।
हल:
(i) माना कि रितु की स्थिर जल में तैरने की चाल xkm/hr एवं धारा की चाल ykm/hr है,
तो प्रश्नानुसार, 2 (x + y) = 20 [∵ समय × चाल = दूरी] ….(1)
⇒ x + y = 10 ….(1)
एवं 2 (x – y) = 4 [∵ समय × चाल = दूरी]
⇒ x – y = 2 ….(2)
⇒ 2x = 12 ⇒ x = 122 = 6 km/hr [समीकरण (1) + समीकरण (2) से]
एवं 2y = 8 ⇒ y = 82 = 4 km/hr [समीकरण (1) – समीकरण (2) से]
अतः रितु की स्थिर जल में तैरने की अभीष्ट चाल = 6 km/hr एवं धारा की अभीष्ट चाल = 4 km/hr है।
(ii) माना एक महिला अकेले एक कसीदे के कार्य को x दिन में तथा एक पुरुष अकेले उसी कार्य को । दिन में करते हैं, तो प्रश्नानुसार,
अतः एक अकेली महिला अभीष्ट कार्य को करने में 18 दिन लेगी तथा पुरुष अकेला उसी कार्य को 36 दिन में करेगा।
(ii) माना कि रेलगाड़ी की चाल x km/hr तथा बस की चाल y km/hr है,
जब रूही 60 km की दूरी रेलगाड़ी से तय करती है, तो बस द्वारा 300 – 60 = 240 km की दूरी तय करेगी तो यात्रा में कुल 4 घण्टे का समय लगेगा।
अतः 60x + 240y = 4 ⇒ 15x + 60y = 1
जब रूही 100 km की दूरी रेलगाड़ी से तय करती है, तो
बस द्वारा 300 – 100 = 200 km की दूरी तय करेगी तो यात्रा में कुल समय = 4 घण्टे 10 मिनट लगेंगे अर्थात् 4 1060 = 256 घण्टे
अतः 100x + 200y = 256
⇒ 24x + 48y = 1 ….(2)
माना लीजिए 1x = s एवं 1y = t तब
15s + 60t = 1 ⇒ 15s + 60t – 1 = 0 ….(3)
एवं 24s + 48t = 1 ⇒ 24s + 48t – 1 = 0 ….(4)
अतः रेलगाड़ी एवं बस की अभीष्ट चाल क्रमश: 60 km/hr एवं 80 km/hr है।
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
प्रश्न 1.
दो मित्रों अनी और बीजू की आयु में 3 वर्ष का अन्तर है। अनी के पिता धरम की आयु अनी की आयु की दुगुनी और बीजू की आयु अपनी बहन कैथी की आयु की दुगुनी है। कैथी और धरम की आयु का अन्तर 30 वर्ष है। अनी और बीजू की आयु ज्ञात कीजिए।
हल:
मान लीजिए अनी और बीजू की आयु क्रमशः x वर्ष एवं y वर्ष है, तो प्रश्नानुसार
x – y = 3 ….(1)
अनी के पिता धरम की आयु = 2x
एवं कैथी (बीजू की बहिन) की आयु = y2
तब 2x – y2 = 30
⇒ 4x – y = 60 ….(2)
⇒ 3x = 57 [समीकरण (2) – समीकरण (1) से]
⇒ x = 573 = 19 वर्ष
x का मान समीकरण (1) में, रखने पर
19 – y = 3 ⇒ y = 19 – 3 = 16 वर्ष
अतः अनी एवं बीजू की अभीष्ट आयु क्रमशः 19 वर्ष एवं 16 वर्ष है।
प्रश्न 2.
एक मित्र दूसरे से कहता है, “यदि मुझे एक सौ दे दो, तो मैं आपसे दो गुना धनी बन जाऊँगा।” दूसरा उत्तर देता है, “यदि आप मुझे दस दे दें, तो मैं आपसे छः गुना धनी बन जाऊँगा।” बताइए कि उनकी क्रमशः क्या सम्पत्तिया हैं? [भास्कर – II की बीजगणित से]
हल:
मान लीजिए कि दोनों की सम्पत्तियों क्रमशः x एवं y हैं तो
प्रथम शर्तानुसार, x + 100 = 2 (y – 100) = 2y – 200
⇒ x – 2y = – 300 ….(1)
एवं द्वितीय शार्तानुसार, y + 10 = 6 (x – 10) = 6x – 60
⇒ 6x – y = 70 ….(2)
⇒ 12x – 2y = 140 ….(3) [समीकरण (2) × 2 से]
⇒ 11x = 440 [समीकरण (3) में से समीकरण (1) को घटाने पर]
⇒ x = 44011 = ₹40
x का मान समीकरण (1) में रखने पर,
40 – 2y = – 300
⇒ 2y = 40 + 300 = 340
⇒ y = 3402 = ₹ 170
अत: दोनों मित्रों के पास क्रमश: ₹ 40 एवं ₹ 170 हैं।
प्रश्न 3.
एक रेलगाड़ी कुछ दूरी समान चाल से तय करती है। यदि रेलगाड़ी 10 km/hr अधिक तेज चलती होती, तो उसे नियत समय से 2 घण्टे कम लगते और यदि रेलगाड़ी 10 km/hr धीमी चली होती, तो उसे नियत समय से 3 घण्टे अधिक लगते। रेलगाड़ी द्वारा तय की गई दूरी ज्ञात कीजिए।
हल:
मान लीजिए रेलगाड़ी द्वारा तय की गयी दूरी = x km एवं उसकी नियत चाल = y km/hr तो उसकी यात्रा में लगा समय = xy hr
अब प्रथम शर्तानुसार, x(y+10) = xy -2 ….(1)
एवं द्वितीय शर्तानुसार, x(y−10) = xy + 3 ….(2)
⇒ xy = xy + 10x – 2y (y + 10) [समीकरण (1) से]
⇒ 2y2 + 20y = 10x ….(3)
एवं xy = xy – 10x + 3y2 – 30y
⇒ 3y2 – 30y = 10x ….(4)
⇒ y2 – 50y = 0 [समीकरण (4) – समीकरण (3) से]
⇒ y (y – 50) = 0
⇒ या तो y = 0 (जो असम्भव है)
अथवा y – 50 = 0 ⇒ y = 50
अब y का मान समीकरण (1) में रखने पर प्राप्त होता है:
अतः रेलगाड़ी द्वारा तय की गई अभीष्ट दूरी = 600 km.
प्रश्न 4.
एक कक्षा के विद्यार्थियों को पंक्तियों में खड़ा होना है। यदि पंक्ति में 3 विद्यार्थी अधिक होते तो एक पंक्ति कम होती है। यदि पंक्ति में 3 विद्यार्थी कम होते तो 2 पंक्तियाँ अधिक बनतीं हैं। कक्षा में विद्यार्थियों की संख्या ज्ञात कीजिए।
हल:
मान लीजिए कक्षा में विद्यार्थियों की कुल संख्या x है तथा प्रत्येक पंक्ति में । विद्यार्थी रखे जाते हैं तो कुल पंक्तियों की संख्या = xy
अब प्रथम शर्तानुसार, xy+3=xy−1
⇒ xy = xy + 3x – y2 – 3y
⇒ y2 + 3y = 3x ….(1)
एवं द्वितीय शर्तानुसार, xy−3=xy+2
⇒ xy = xy – 3x + 2y2 – 6y
⇒ 2y2 – 6y = 3x ….(2)
⇒ y2 – 9y = 0 [समीकरण (2) – समीकरण (1) से]
⇒ y (y – 9) = 0
⇒ या तो y = 0 (जो असम्भव है)
अथवा y = 9
अब y का मान समीकरण (1) में रखने पर,
(9)2 + 3 (9) = 3x
⇒ 81 +27 = 3x
⇒ 3x = 108 ⇒ x = 1083 = 36
अतः कक्षा में अभीष्ट छात्रों की संख्या = 36.
प्रश्न 5.
एक ∆ABC में ∠C = 3 ∠B = 2 (∠A+ ∠B) है तो त्रिभुज के तीनों कोण ज्ञात कीजिए
हल:
दिया है: ∠C = 3 ∠B = 2(∠A + ∠B) …..(1)
हम जानते हैं कि ∠A + ∠B + ∠C = 180° ….(2)
⇒ 12 ∠C + ∠C = 180° [समीकरण (2) एवं समीकरण (1) से]
[समीकरण (2) में ∠B एवं ∠C के मान रखने पर]
∠A = 180° – 40° – 120° = 180° – 160° = 20°
अतः त्रिभुज के तीनों कोणों का अभीष्ट मान ∠A = 20°, ∠B = 40° एवं ∠C = 120° है।
प्रश्न 6.
समीकरणों 5x – y = 5 और 3x – y = 3 के ग्राफ खींचिए। इन रेखाओं और y-अक्ष से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए। इस प्रकार बने त्रिभुज के क्षेत्रफल का परिकलन कीजिए।
हल:
∵ 5x – y = 5 ….(1)
⇒ y = 5x – 5
एवं 3x – y = 3 ….(2)
⇒ y = 3x – 3
ग्राफीय निरूपण :
आकृति : 3.10
अतः त्रिभुज के अभीष्ट शीर्षों के निर्देशांक (1, 0), (0, – 3) एवं (0, – 5) हैं (ग्राफ के अनुसार)।
अब ∆ABC का क्षेत्रफल
चूँकि y – अक्ष और दत्त रेखाओं के मध्य ∆ABC बना है जिसका आधार BC = 2 इकाई एवं शीर्षलम्ब OA = 1 इकाई
∵ ar (∆ABC) = 12 × BC × OA
⇒ ar (∆ABC) = 12 × 2 × 1 = 1 वर्ग इकाई
अतः ग्राफ एवं y-अक्ष से बने ∆ABC का अभीष्ट क्षेत्रफल = 1 वर्ग इकाई।
प्रश्न 7.
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए :
(i) px + qy = p – q; qx – py = p + q
(ii) ax + by = c; bx + ay = 1 + c
(iii) xa – yb = 0; ax + by = a2 + b2
(iv) (a – b) x + (a + b)y = a2 – 2ab – b2; (a + b) (x + y) = a2 + b2
(v) 152x – 378y = -74; – 378x + 152y = – 604
हल:
(i) चूंकि px + qy = p – q ⇒ px + qy – (p – q) = 0 ….(1)
एवं qx – py = p + q ⇒ qx – py – (p + q) = 0 ….(2)
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 1 एवं y = -1 है।
(ii) चूंकि ax + by = c ⇒ ax + by – c = 0 ….(1)
एवं bx + ay = 1 + c ⇒ bx + ay – (c + 1) = 0 ….(2)
(iii) चूँकि xa−yb=0⇒bx−ay=0 …..(1)
एवं ax + by = a2 + b2 …..(2)
समीकरण (1) से x = ab y समीकरण (2) में रखने पर प्राप्त होता है:
y का मान समीकरण (1) में रखने पर,
xa−bb=0⇒xa=1⇒x=a
अत: दत्त समीकरण युग्म का अभीष्ट हल x = a एवं y = b है।
(iv) चूँकि (a – b) x + (a + b) y = a2 – 2ab – b2 …..(1)
एवं (a + b) (x + y) = a2 + b2 ….(2)
समीकरण (2) से (a2+b2a+b−x) समीकरण (1) में रखने पर प्राप्त होता है :
(a−b)x+(a+b)(a2+b2a+b−x)=a2−2ab−b2
⇒ (a – b)x + [(a2 + b2) – x (a + b)] = a2 – 2ab – b2
⇒ a2 + b2 + (a -b – a – b)x = a2 – 2ab – b2
⇒ -2bx = -2b2 – 2ab = -2b (b + a)
⇒ x = b + a = a + b
x का मान समीकरण (1) में रखने पर,
(a – b) (a + b) + (a + b)y = a2 – 2ab – b2
⇒ a2 – b2 + (a + b)y = a2 – b2 – 2ab
⇒ (a + b)y = -2ab
⇒ y = – 2aba+b
अतः दत्त समीकरण युग्म का अभीष्ट हल x = (a + b) एवं y = −2aba+b है।
(v) चूँकि 152x – 378y = – 74
⇒ 152x – 378y + 74 = 0 ….(1)
एवं -378x + 152y = – 604
⇒ -378x + 152y + 604 = 0 ….(2)
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 2 एवं y = 1 है।
प्रश्न 8.
ABCD एक चक्रीय चतुर्भुज है। (देखिए संलग्न आकृति 3.11) इस चक्रीय चतुर्भुज के कोण ज्ञात कीजिए।
हल:
संलग्न आकृति के अनुसार, ∠A = 4y + 20
∠B = 3y – 5
∠C = -4x
एवं ∠D = – 7x + 5
अब हम जानते हैं कि
∵ ∠A + ∠C = 180°
[चक्रीय चतुर्भुज के सम्मुख कोण हैं।]
⇒ 4y + 20 + (-4x) = 180°
⇒ – 4x + 4y + 20 = 180°
⇒ – 4x + 4y = 180° – 20° = 160°
⇒ -x + y = 40 …(1)
एवं ∠B + ∠D = 180° (चक्रीय चतुर्भुज के सम्मुख कोण हैं)
⇒ 3y – 5 – 7x + 5 = 180°
⇒ – 7x + 3y = 180°…..(2)
एवं – 7x + 7y = 280 …..(3) [समीकरण (1) × 7 से]
⇒ 4y = 100 [समीकरण (3) – समीकरण (2) से]
⇒ y = 1004 = 25
y का मान समीकरण (1) में रखने पर,
-x + 25 = 40
⇒ -x = 40 – 25 = 15
⇒ x = – 15
अब ∠A = 4y + 20
= 4 × 25 + 20 = 100 + 20 = 120°
∠B = 3y – 5
= 3 × 25 – 5 = 75 – 5 = 70°
∠C = -4x
= -4(-15) = 60°
∠D = – 7x + 5
= -7 (- 15) + 5
= 105 + 5 = 110°
अतः दिए चक्रीय चतुर्भुज के अभीष्ट कोण हैं ∠A = 120°, ∠B = 70°, ∠C = 60° एवं ∠D = 110°.
MP Board Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions
MP Board Class 10th Maths Chapter 3 अतिरिक्त परीक्षोपयोगी प्रश्न
MP Board Class 10th Maths Chapter 3 दीर्घ उत्तरीय प्रश्न
प्रश्न 1.
4 पैन एवं 4 पेंसिल बॉक्स का मूल्य ₹ 100 है। एक पैन का तीन गुना मूल्य एक पेंसिल बॉक्स . के मूल्य से ₹ 15 अधिक है। रैखिक युगपत समीकरण युग्म बनाइए तथा एक पैन एवं एक पेंसिल बॉक्स का मूल्य ज्ञात कीजिए।
हल:
मान लीजिए एक पैन का मूल्य ₹x एवं एक पेंसिल बॉक्स का मूल्य ₹y हैं तो प्रश्नानुसार,
4x +4y = 100 ⇒ x + y = 25 ….(1)
एवं 3x = y + 15 ⇒ 3x – y = 15 ….(2)
⇒ 4x = 40 [समीकरण (1) + समीकरण (2) से]
⇒ x = 404 = 10
अब x का मान समीकरण (1) में रखने पर,
10 + y = 25 ⇒ y = 25 – 10 = 15
अतः एक पैन का अभीष्ट मूल्य ₹ 10 एवं एक पेंसिल बॉक्स का अभीष्ट मूल्य ₹ 15 है।
प्रश्न 2.
5 संतरे और 3 सेबों का मूल्य ₹ 35 है तथा 2 संतरे और 4 सेबों का मूल्य ₹ 28 है तब एक संतरा तथा 1 सेब का मूल्य ज्ञात कीजिए। (2019)
हल:
(निर्देश : उपर्युक्त प्रश्न की तरह हल करें।)
[उत्तर: एक संतरे का अभीष्ट मूल्य = ₹4 एवं एक सेब का मूल्य = ₹ 5]
प्रश्न 3.
अंकित अपने घर के लिए 14 किलोमीटर की दूरी आंशिक रूप से रिक्शे के द्वारा एवं आंशिक रूप से बस के द्वारा तय करती है। वह 2 km रिक्शा के द्वारा तथा शेष दूरी बस के द्वारा तय ‘ करने में आधा घण्टा लेता है। दूसरी ओर यदि उसने 4 km दूरी रिक्शा से तथा शेष दूरी बस से तय की होती तो उसे 9 मिनट अधिक लगते। रिक्शा एवं बस की चाल ज्ञात कीजिए।
हल:
मान लीजिए रिक्शा की चाल x km/hr एवं बस की चाल y km/hr हो तो प्रश्नानुसार,
समीकरण (2) एवं (3) में 1x = p एवं 1y = q रखने पर,
4p + 10q = 1320 ….(4)
4p + 24q = 1 ….(5)
⇒ 14q = 1 – 1320 = 720 [समीकरण (5)- समीकरण (4) से]
⇒q=714×20=140⇒1y=q=140⇒y=40km/hr
q का मान समीकरण (4) में रखने पर,
4p+10×140=1320⇒4p=1320−14=820
p=84×20=110⇒1x=p=110⇒x=10km/hr
अतः रिक्शा एवं बस की अभीष्ट चाल क्रमश: 10 km/hr एवं 40 km/hr है।
प्रश्न 4.
एक मोटर वोट 30 km की दूरी जल धारा के विरुद्ध एवं 28 km की दूरी धारा की दिशा में तय करने में 7 घण्टे का समय लेती है। यह 21 km की दूरी धारा के विपरीत जाने एवं धारा की दिशा में वापस आने में कुल समय 5 घटे में तय कर सकती है। स्थिर जल में नाव की चाल एवं जल धारा की चाल ज्ञात कीजिए।
हल:
माना लीजिए स्थिर जल में नाव की चाल x km/hr एवं जल धारा की चाल y km/hr है, तो प्रश्नानुसार,
30p + 28q = 7 ….(3) × 3
एवं 21p + 21q = 5 …(4) × 4
⇒ 90p + 84q = 21 …(5)
एवं 84p + 84q = 20 ….(6)
⇒ 6p = 1 [समीकरण (5) – समीकरण (6) से]
x का मान समीकरण (8) में रखने पर,
10 + y = 14 ⇒ y = 14 – 10 = 4
अतः स्थिर जल में नाव की अभीष्ट चाल 10 km/hr एवं जल धारा की अभीष्ट चाल 4 km/hr है।
प्रश्न 5.
दो वर्ष पूर्व सलीम की उम्र उसकी पुत्री की उम्र की तीन गुनी थी और 6 वर्ष पश्चात् उसकी उम्र उसकी पुत्री की उम्र के दूने से 4 वर्ष अधिक हो जाएगी। दोनों की वर्तमान उम्र ज्ञात कीजिए।
हल:
मान लीजिए सलीम की वर्तमान उम्र x वर्ष एवं उसकी पुत्री की वर्तमान उम्र y वर्ष है। तो प्रश्नानुसार,
x – 2 = 3 (y – 2)
⇒ x – 3 y = -4 ….(1)
एवं (x + 6) = 2 (y + 6) + 4
⇒ x – 2y = 12 + 4 – 6 = 10
⇒ y = 14 [समीकरण (2) – समीकरण (1) से]
y का मान समीकरण (2) में रखने पर,
x – 2 × 14 = 10
⇒ x – 28 = 10
⇒ x = 28 + 10 = 38
अतः सलीम की अभीष्ट वर्तमान उम्र 38 वर्ष एवं उसकी पुत्री की अभीष्ट वर्तमान उम्र 14 वर्ष है।
प्रश्न 6.
एक पिता की उम्र अपने दोनों पुत्रों की उम्र के योग की दो गुनी है। 20 वर्ष बाद उसकी उम्र अपने दोनों पुत्रों की उम्र के योग के बराबर हो जाएगी। पिता की वर्तमान उम्र ज्ञात कीजिए।
हल:
मान लीजिए पिता की वर्तमान आयु x वर्ष है और उसके दोनों पुत्रों की उम्र का योग y वर्ष है तो प्रश्नानुसार,
x = 2y ⇒ x – 2y = 0 ….(1)
चूँकि 20 वर्ष बाद पिता की उम्र में तो 20 वर्ष की वृद्धि होगी जबकि दोनों पुत्रों की उम्र के योग में 20 + 20 = 40 वर्ष की वृद्धि होगी अतः
x + 20 = y + 40
⇒ x – y = 40 – 20 = 20 ….(2)
⇒ y = 20 [समीकरण (2) – समीकरण (1) से]
y का मान समीकरण (1) में रखने पर,
x – 2 × 20 = 0 ⇒ x – 40 = 0
⇒ x = 40
अतः पिता की अभीष्ट उम्र 40 वर्ष है।
प्रश्न 7.
दो संख्याओं का अनुपात 5 : 6 है यदि प्रत्येक में से 8 घटा दिया जाए तो उनका अनुपात 4 : 5 हो जाएगा। वे संख्याएँ ज्ञात कीजिए।
हल:
मान लीजिए कि वे संख्याएँ x एवं y है, तो प्रश्नानुसार
समीकरण (1) को 4 से एवं समीकरण (2) को 5 से गुणा करने पर,
24x – 20y = 0 ….(3)
एवं 25x – 20y = 40 ….(4)
⇒ x = 40 [समीकरण (4) – समीकरण (3) से]
x का मान समीकरण (1) में रखने पर,
6 × 40 – 5y = 0
⇒ 240 – 5y = 0
⇒ 5y = 240
⇒ y = 2405 = 48
अत: अभीष्ट संख्याएँ 40 एवं 48 हैं।
प्रश्न 8.
दो परीक्षा कक्षों A एवं B में कुछ छात्र हैं यदि कक्ष A से 10 छात्र कक्ष B में स्थानान्तरित कर दिए जाएँ तो दोनों कक्षों में छात्र संख्या बराबर हो जायेगी। लेकिन यदि 20 छात्र कक्ष B से कक्ष A में स्थानान्तरित कर दिए जाएँ तो कक्षA की छात्र संख्या कक्ष B की छात्र संख्या की दूनी हो जाएगी। दोनों कक्षों में छात्रों की संख्या ज्ञात कीजिए।
हल:
मान लीजिए कक्ष A में छात्र संख्या x एवं कक्ष B में छात्र संख्या y है। तो प्रश्नानुसार,
(x – 10) = (y + 10)
⇒ x – y = 20 ….(1)
एवं (x + 20) = 2 (y – 20)
⇒ x + 20 = 2y – 40
⇒ x – 2y = – 40 – 20 = – 60 ….(2)
समीकरण (1) में से समीकरण (2) को घटाने पर,
y = 20 + 60 = 80
y का मान समीकरण (1) में रखने पर,
x – 80 = 20 ⇒ x = 80 + 20 = 100
अतः परीक्षा कक्ष A में अभीष्ट छात्र संख्या 100 एवं परीक्षा कक्ष B में अभीष्ट छात्र संख्या 80 है।
प्रश्न 9.
एक दुकानदार किराए पर पुस्तक पढ़ने को देती है। वह प्रथम दो दिन के लिए एक निश्चित किराया तथा अतिरिक्त दिनों के लिए प्रतिदिन के हिसाब से अतिरिक्त किराया वसूल करती है। लतिका ने 6 दिन के लिए पुस्तक ली जिसके लिए उसे ₹ 22 देने पड़े तथा आनन्द ने पुस्तक को 4 दिन तक रखा और उसने ₹16 का भुगतान किया। नियत (निश्चित) किराया एवं प्रत्येक अतिरिक्त दिन का किराया ज्ञात कीजिए।
हल:
माम लीजिए प्रथम दो दिन का नियत किराया ₹x एवं अतिरिक्त दिन के लिए प्रतिदिन किराया ₹y है, तो प्रश्नानुसार,
x + 4y = 22 …(1) [अतिरिक्त 6 – 2 = 4 दिन]
एवं x + 2y = 16 ….(2) [अतिरिक्त 4 – 2 = 2 दिन]
⇒ 2y = 6 [समीकरण (1) – समीकरण (2) से]
⇒ y = 62 = 3
y का मान समीकरण (1) में रखने पर,
x + 4 × 3 = 22
⇒ x + 12 = 22
⇒ x = 22 – 12 = 10
अतः पुस्तकों का नियत अभीष्ट किराया ₹ 10 एवं अतिरिक्त दिनों के लिए प्रतिदिन अभीष्ट किराया ₹3 है।
प्रश्न 10.
एक प्रतियोगी परीक्षा में प्रत्येक सही उत्तर के लिए 1 अंक मिलता है लेकिन प्रत्येक गलत उत्तर के लिए 12 अंक काट लिया जाता है। जयन्ती ने 120 प्रश्नों के उत्तर दिए और कुल 90 अंक प्राप्त किए। उसने कितने प्रश्नों के सही उत्तर दिए ?
हल:
मान लीजिए कि जयन्ती ने x प्रश्नों के सही उत्तर तथा y प्रश्नों के गलत उत्तर दिए।
तो प्रश्नानुसार,
x + y = 120 ….(1)
एवं x – 12 y = 90
⇒2x – y = 180 ….(2)
समीकरण (2) में समीकरण (1) को जोड़ने पर,
3x = 300 ⇒ x = 3003 = 100
अतः जयन्ती ने अभीष्ट 100 प्रश्नों के सही उत्तर दिए।
प्रश्न 11.
ग्राफीय (ज्यामितीय) विधि से ज्ञात कीजिए कि निम्न रैखिक युगपद समीकरण युग्म संगत हैं या अंसगत/अगर संगत है तो उनको हल कीजिए:
(i) 3x + y + 4 = 0;6x – 2y + 4 = 0
(ii) x – 2y = 6; 3x – 6y = 0
(iii) x + y = 3; 3x + 3y = 9
हल:
(i) 3x + y + 4 = 0
⇒ y = – 3x – 4
जब x = 0 ⇒ y = -4
और जब x = – 2
⇒ y = -3(-2)-4
= 6 – 4 = 2
एवं 6x – 2y + 4 = 0 ….(2)
⇒ 3x – y + 2 = 0
⇒ y = 3x + 2
जब x = 0 ⇒ y = 2
और जब x = -1 ⇒ y = 3 (-1)+ 2 = – 3 + 2 = – 1
आकृति : 3.12
चूँकि ग्राफ परस्पर बिन्दु P पर प्रतिच्छेद करते हैं।
अत: रैखिक युगपद समीकरण युग्म संगत हैं तथा अभीष्ट हल x = -1 एवं y = -1 है।
(ii) x – 2y = 6
⇒ y = x−62
जब x = 0 ⇒ y = -3
और जब x = 2
⇒ y = 2−62 = −42 = -2
एवं 3x – 6y = 0
⇒ 6y = 3x
⇒ y = 12 x
जब x = 0 ⇒ y = 0
और जब x = 4 ⇒ y = 2
आकृति : 3.13
चूँकि ग्राफ परस्पर प्रतिच्छेद नहीं करते अर्थात् समानान्तर हैं।
अत: रैखिक युगपद समीकरण युग्म असंगत है।
(iii) x + y = 3 …(1)
⇒ y = 3 – x
जब x = 0 तब y = 3 – 0 = 3
और जब x = 3 तब y = 3 – 3 = 0
एवं 3x +3y = 9 …(2)
x+ y = 3 .
y = 3 – x
जब x = 0 ⇒ y = 3 – 0 = 3
और जब x = 3 ⇒y = 3 = 0
आकृति : 3.14
चूँकि ग्राफ संपाती हैं तथा y = 3 -x से y का मान x के मान पर आश्रित है।
अत: रैखिक युगपद समीकरण युग्म आश्रित संगत है तथा इसके अनन्तशः अनेक हल होंगे।
MP Board Class 10th Maths Chapter 3 लघु उत्तरीय प्रश्न
प्रश्न 1.
λ के किस मान के लिए रैखिक समीकरण युग्म λx + y = λ2 एवं x + λy = 1
(i) का कोई भी हल नहीं है?
(ii) अनन्तशः अनेक हल हैं?
(iii) एक अद्वितीय हल है?
हल:
(i) कोई हल नहीं होने के लिए:
अत: λ का अभीष्ट मान-1 है।
(ii) अनन्तशः अनेक हल के लिए:
अत: λ का अभीष्ट मान 1 है।
(iii) एक अद्वितीय हल होने के लिए:
अतः ± 1 को छोड़कर का मान प्रत्येक वास्तविक संख्या होगी।
प्रश्न 2.
k के किस मान के लिए समीकरण युग्म kx + 3y = k – 3 एवं 12x + ky = k का कोई हल नहीं होगा?
हल:
kx + 3y = k – 3 ….(1)
12x + ky = k …..(2)
अतः k का अभीष्ट मान -6 है।
प्रश्न 3.
a एवं b के किस मान के लिए निम्न समीकरण युग्म के अनन्तशः अनेक हल होंगे :
x + 2y = 1 एवं (a – b) x + (a + b)y = a + b – 2
हल:
x + 2y = 1 ….(1)
(a – b)x + (a + b)y = a + b – 2 ….(2)
अनन्तशः अनेक हल होने के लिए,
1a−b=2a+b=1a+b−2
⇒ a + b = 2a – 2b ⇒ a – 3b = 0 ….(3)
एवं 2a + 2b – 4 = a + b → a + b = 4 ….(4)
⇒ 4b = 4 ⇒ b = 44 = 1 [समीकरण (4) – समीकरण (3) से]
b का मान समीकरण (4) में रखने पर,
a + 1 = 4 ⇒ a = 4 – 1 = 3
अत: a एवं के अभीष्ट मान क्रमशः 3 एवं 1 हैं।
प्रश्न 4.
निम्न प्रश्न क्रमांक (i) से (iv) में p का मान तथा (v) में p एवं के मान ज्ञात कीजिए:
(i) 3x – y – 5 = 0 एवं 6x – 2y – p = 0. यदि इन समीकरणों से प्रदर्शित रेखाएँ परस्पर समानान्तर हों।
(ii) -x + py = 1 एवं px – y = 1, यदि समीकरण युग्म का कोई हल न हो।
(iii) – 3x + 5y = 7 एवं 2px -3y = 1, यदि इस समीकरण युग्म से प्रदर्शित रेखाएँ परस्पर एक अद्वितीय बिन्दु पर प्रतिच्छेद करती हों।
(iv) 2x + 3y – 5 = 0 एवं px – 6y – 8 = 0 यदि समीकरण युग्म का अद्वितीय हल हो।
(v) 2x + 3y = 7 एवं 2px + py = 28 – qy, यदि समीकरण युग्म के अनन्तशः अनेक हल हों।
हल:
(i) 3x – y – 5 = 0 ….(1)
6x – 2y – p = 0 …..(2)
समीकरण युग्म द्वारा प्रदर्शित रेखाएँ समानान्तर होंगी,
यदि 36 = 12 ≠ 5p
⇒ p ≠ 10
अतः p का अभीष्ट मान कोई भी वास्तविक संख्या होगी केवल 10 को छोड़कर।
(ii) -x + py = 1 ….(1)
px – y = 1 ….(2)
समीकरण युग्म का कोई भी हल नहीं होगा यदि
−1p=p−1≠11
⇒ p2 = 1 ⇒ p = ± 1 लेकिन p ≠ -1
अतः p का अभीष्ट मान 1 होगा।
(iii) -3x + 5y = 7 ….(1)
2px – 3y = 1 ….(2)
समीकरण युग्म द्वारा प्रदर्शित रेखाएँ एक अद्वितीय बिन्दु पर परस्पर प्रतिच्छेद करेंगी यदि
−32p≠5−3⇒10p≠9⇒p≠910
अतः 910 को छोड़कर p का कोई भी वास्तविक मान अभीष्ट होगा।s
(iv) 2x + 3y – 5 = 0 ….(1)
px – 6y – 8 = 0 ….(2)
समीकरण युग्म का एक अद्वितीय हल होगा यदि
2p≠3−6⇒3p≠−12⇒p≠−4
अतः -4 को छोड़कर p का कोई भी वास्तविक मान अभीष्ट होगा।
(v) 2x + 3y = 7 …(1)
2px + py = 28 – qy
⇒ 2px + (p + q) y = 28 …(2)
समीकरण युग्म के अनन्तशः अनेक हल होंगे
अतः p एवं के अभीष्ट मान क्रमशः 4 एवं 8 है।
प्रश्न 5.
दो सीधे रास्ते समीकरण युग्म x-3y = 2 एवं- 2x + 6y = 5 के द्वारा प्रदर्शित किए हैं। जाँच कीजिए कि ये रास्ते एक-दूसरे को प्रतिच्छेद करते हैं या नहीं।
हल:
चूँकि x – 3y = 2 ….(1)
एवं -2x + 6y = 5 ….(2)
अतः दोनों रास्ते परस्पर समान्तर होंगे और परस्पर किसी बिन्दु पर प्रतिच्छेद नहीं करेंगे।
प्रश्न 6.
निम्न आयत में x एवं के मान ज्ञात कीजिए :
हल:
चूँकि आयत की सम्मुख भुजाएँ बराबर होती हैं इसलिए
x + 3y = 13 ….(1)
3x + y = 7 ….(2)
समीकरण (2) को (3) से गुणा करने पर,
9x + 3y = 21 ….(3)
⇒ 8x = 8 [समीकरण (3) – समीकरण (1) से]
⇒ x = 88 = 1
x का मान समीकरण (1) में रखने पर,
1 + 3y = 13 ⇒ 3y = 13 – 1 = 12
⇒ y = 123 = 4
अतः x एवं y के अभीष्ट मान क्रमश: 1 एवं 4 हैं।
प्रश्न 7.
निम्न समीकरण युग्मों को हल कीजिए:
(i) x + y = 3.3; 0.63x−2y = -1; जहाँ 3x – 2y ≠ 0
(ii) x3 + y4 = 4; 5x6 – y8 = 4
(iii) 4x + 6y = 15; 6x – 8y = 14, जहाँ y ≠ 0
(iv) 12x – 1y = -1; 1x + 12y = 8, जहाँ x,y ≠ 0
(v) 2xyx+y = 32; xy2x−y = −310 जहाँ x + y ≠ 0, 2x – y ≠ 0
हल:
(i) चूंकि x + y = 3.3 …..(1)
एवं 0⋅63x−2y=−1⇒3x−2y=−0⋅6 …..(2)
समीकरण (1) को 2 से गुणा करने पर,
2x + 2y = 6.6 …..(3)
⇒ 5x = 6 [समीकरण (3) + समीकरण (2) से]
⇒ x = 65 = 1.2
x का मान समीकरण (1) में रखने पर,
1.2 + y = 3.3 ⇒ y = 3.3 – 1.2 = 2.1
अतः x एवं y के अभीष्ट मान क्रमश: 1.2 एवं 2.1 हैं।
(ii) चूंकि x3 + y4 = 4 ⇒ 4x + 3y = 48 ….(1)
एवं 5x6 – y8 = 4 ⇒ 20x – 3y = 96 ….(2)
⇒ 24x = 144 [समीकरण (1) + समीकरण (2) से]
⇒ x = 14424 = 6
x का मान समीकरण (1) में रखने पर,
4 × 6 + 3y = 48 ⇒ 24 + 3y = 48
⇒ 3y = 48 – 24 = 24 ⇒ y = 243 = 8
अतः x एवं y के अभीष्ट मान = 6 एवं 8 हैं।
समीकरण (3) को 4 से तथा समीकरण (4) को 3 से गुणा करने पर,
16x + 24z = 60 …..(5)
18x – 24z = 42 …..(6)
⇒ 34x = 102
⇒ x = 10234 = 3
x का मान समीकरण (3) में रखने पर,
4 × 3 + 6z = 15 ⇒ 12 + 3z = 15
⇒ 6z = 15 – 12 = 3 ⇒ z 36 = 12
z = 1y = 12 ⇒ y = 2
अतः x एवं के अभीष्ट मान क्रमशः 3 एवं 2 हैं।
समीकरण (3) को 2 से गुणा करने पर,
2p – 4q = -4 …(5)
⇒ 5q = 20 [समीकरण (4)- समीकरण (5) से]
अतः x एवं y के अभीष्ट मान क्रमशः 16 एवं 14 हैं।
q का मान समीकरण (4) में रखने पर,
3p – 6(-23) = 10 ⇒ 3p + 4 = 10
⇒ 3p = 10 – 4 = 6 ⇒ p = 63 = 1x ⇒ x = 36 = 12
अत: x एवं y के अभीष्ट मान क्रमशः 12 एवं –32 हैं।
प्रश्न 8.
समीकरण युग्म x10 + y5 -1 = 0 एवं x8 + y6 = 15 को हल कीजिए और यदि y = λx + 5 तो λ का मान ज्ञात कीजिए।
हल:
चूंकि x10 + y5 – 1 = 0 ⇒ x + 2y = 10 ….(1)
एवं x8 + y6 = 15 ⇒ 3x + 4y = 360 ….(2)
समीकरण (1) को 2 से गुणा करने पर,
2x + 4y = 20 …(3)
⇒ x = 340 [समीकरण (2)- समीकरण (3) से]
x का मान समीकरण (1) में रखने पर,
340 + 2y = 10 ⇒ 2y = 10 – 340 = -330
⇒ y = −3302 = -165
अतः x एवं y के अभीष्ट मान क्रमशः 340 और – 165 हैं।
अब y = λx + 5 में x और y के मान रखने पर,
– 165 = λ × 340 + 5
⇒ 340λ = – 165 – 5 = – 170
⇒ λ = −170340 = – 12
अतः λ का अभीष्ट मान –12 है।
MP Board Class 10th Maths Chapter 3 अति लघु उत्तरीय प्रश्न
प्रश्न 1.
क्या निम्न रैखिक समीकरण युग्मों का कोई हल नहीं है? अपने उत्तर की पुष्टि कीजिए :
(i) 2x + 4y = 3; 12y + 6x = 6
(ii) x = 2y; y = 2x
(iii) 3x + y – 3 = 0; 2x + 23 y = 2
हल:
(i) चूंकि 2x + 4y = 3 ….(1)
एवं 12y + 6x = 6
⇒ 6x + 12y = 6
अतः हाँ, समीकरण युग्म का कोई भी हल नहीं है।
(ii) चूंकि x = 2y ⇒ x – 2y = 0 ….(1)
एवं y = 2x ⇒ 2x – y = 0 ….(2)
अत: नहीं, क्योंकि समीकरण युग्म का अद्वितीय हल होगा।
अत: नहीं, क्योंकि समीकरण युग्म के अनन्तशः अनेक हल होंगे।
प्रश्न 2.
क्या निम्नलिखित समीकरण युग्म सम्पाती रेखाओं को प्रदर्शित करती हैं? अपने उत्तर की पुष्टि कीजिए :
(i) 3x + 17y = 3; 7x + 3y = 7
(ii) -2x – 3y = 1; 6y + 4x = -2
(iii) x2 + y + 25 = 0 ; 4x + 8y + 516 = 0
हल:
अतः नहीं, क्योंकि यह समीकरण युग्म प्रतिच्छेदी रेखाओं को प्रदर्शित करता है।
(ii) चूंकि -2x – 3y = 1 ⇒ 2x + 3y = – 1 ….(1)
एवं 6y + 4x = -2 = 4x + 6y = -2 ….(2)
अतः हाँ, यह समीकरण युग्म सम्पाती रेखाओं को प्रदर्शित करता है।
(iii) चूंकि x2 + y + 25 = 0 ⇒ 5x + 10y + 4 = 0 ….(1)
एवं 4x + 8y + 516 ⇒ 64x + 128y + 5 = 0 …..(2)
अतः नहीं, क्योंकि यह समीकरण युग्म समान्तर रेखाओं को प्रदर्शित करता है।
प्रश्न 3.
क्या निम्नलिखित रैखिक समीकरण युग्म संगत है? अपने उत्तर की पुष्टि कीजिए :
(i) – 3x – 4y = 12; 4y + 3x = 12
(ii) 35 x – y = 12 ;15 x – 3y = 16
(iii) 2ax + by = a; 4ax + 2by – 2a = 0
(iv) x + 3y = 11; 2 (2x + 6y) = 22
हल:
(i) चूंकि – 3x – 4y = 12 ⇒ 3x + 4y = – 12 ….(1)
एवं 4y + 3x = 12 = 3x + 4y = 12 ……(2)
अतः नहीं, क्योंकि रैखिक समीकरण युग्म का कोई हल नहीं।
अतः हाँ, क्योंकि रैखिक समीकरण युग्म का अद्वितीय हल है।
(iii) चूंकि 2ax + by = a ….(1)
4ax + 2by – 2a = 0
⇒ 4ax + 2by = 2a ….(2)
अत: हाँ, यह रैखिक समीकरण युग्म आश्रित संगत है और इसके अनन्तशः अनेक हल हैं।
(iv) चूंकि x + 3y = 11 ….(1)
एवं 2(2x + 6y) = 22 ⇒ 2x + 6y = 11 ….(2)
अतः नहीं, क्योंकि रैखिक समीकरण युग्म का कोई हल नहीं है।
प्रश्न 4.
“समीकरण युग्म λx + 3y =-7; 2x + 6y =14 के अनन्तशः अनेक हल होंगे के लिए का मान 1 होना चाहिए,” क्या यह कथन सत्य है? कारण दीजिए।
हल:
चूंकि λx + 3y = -7 ….(1)
एवं 2x + 6y = 14 ….(2)
अतः कथन असत्य हैं, क्योकि λ = 1 पर रैखिक समीकरण युग्म का कोई भी हल नहीं होगा।
प्रश्न 5.
c के सभी वास्तविक मानों के लिए समीकरण युग्म x – 2y = 8; 5x – 10y = c का एक अद्वितीय हल होगा। प्रमाणित कीजिए कि कथन सत्य है या असत्य।
हल:
चूँकि x – 2y = 8 ….(1)
एवं 5x – 10y = c ….(2)
एवं a1a2=15,b1b2=−2−10=15 एवं c1c2=8c
⇒ a1a2=b1b2
अतः कथन असत्य है, क्योंकि के किसी भी मान के लिए समीकरण युग्म का अद्वितीय हल नहीं होगा।
प्रश्न 6.
“समीकरण x = 7 के द्वारा प्रदर्शित रेखा x – अक्ष के समान्तर होगी।” पुष्टि कीजिए कि उक्त कथन सत्य है या नहीं:
उत्तर:
कथन असत्य है, क्योंकि x = 7 y – अक्ष के समान्तर रेखा का समीकरण है जो x – अक्ष पर लम्ब होती है। अत: इस पर समान्तर नहीं हो सकती।
MP Board Class 10th Maths Chapter 3 वस्तुनिष्ठ प्रश्न
MP Board Class 10th Maths Chapter 3 बहु-विकल्पीय
प्रश्न 1.
समीकरण युग्म 6x – 3y + 10 = 0 एवं 2x – y + 9 = 0 ग्राफ पर दो रेखाएँ प्रदर्शित करती हैं जो :
(a) एक निश्चित बिन्दु पर परस्पर प्रतिच्छेद करती हैं
(b) दो निश्चित बिन्दुओं पर परस्पर प्रतिच्छेद करती हैं
(c) सम्पाती होती हैं
(d) समान्तर होती हैं।
उत्तर:
(a) एक निश्चित बिन्दु पर परस्पर प्रतिच्छेद करती हैं
प्रश्न 2.
समीकरण युग्म x + 2y + 5 = 0 एवं -3x – 6y + 1 = 0 के होंगे:
(a) एक अद्वितीय हल
(b) दो निश्चित हल
(c) अनन्तशः अनेक हल
(d) कोई हल नहीं।
उत्तर:
(d) कोई हल नहीं।
प्रश्न 3.
यदि एक समीकरण युग्म संगत है तो रेखाएँ होंगी :
(a) समान्तर
(b) सदैव सम्पाती
(c) प्रतिच्छेदी या सम्पाती
(d) सदैव प्रतिच्छेदी।
उत्तर:
(c) प्रतिच्छेदी या सम्पाती
प्रश्न 4.
समीकरण युग्म y = 0 और y = -7 के होंगे :
(a) एक हल
(b) दो हल
(c) अनन्तश: अनेक हल
(d) कोई हल नहीं।
उत्तर:
(d) कोई हल नहीं।
प्रश्न 5.
समीकरण युग्म x = a एवं y = b ग्राफीय रूप से रेखाएँ प्रदर्शित करता है जो होती हैं :
(a) समान्तर
(b) (b, a) पर प्रतिच्छेदी
(c) सम्पाती
(d) (a, b) पर प्रतिच्छेदी।
उत्तर:
(d) (a, b) पर प्रतिच्छेदी।
प्रश्न 6.
k के किस मान के लिए समीकरण 3x – y + 8 = 0 और 6x – ky = -16 सम्पाती रेखाएँ प्रदर्शित करेगा?
(a) 12
(b) – 12
(c) 2
(d) -2
उत्तर:
(c) 2
प्रश्न 7.
समीकरण 3x + 2ky = 2 एवं 2x + 5y + 1 = 0 रेखाएँ समान्तर हैं तो k का मान होगा :
(a) – 54
(b) 25
(c) 154
(d) 32
उत्तर:
(c) 154
प्रश्न 8.
c का मान जिसके लिए समीकरण युग्म cx – y = 2 एवं 6x – 2y = 4 के अनन्तशः अनेक हल होंगे:
(a) 3
(b) -3
(c) -12
(d) कोई मान नहीं।
उत्तर:
(a) 3
प्रश्न 9.
आश्रित रैखिक समीकरण युग्म में से एक समीकरण -5x + 7y = 2 है, तो दूसरा समीकरण होगा:
(a) 10x + 14y + 4 = 0
(b) – 10x – 14y + 4 = 0
(c) – 10x + 14y + 4 = 0
(d) 10x – 14y = -4.
उत्तर:
(d) 10x – 14y = -4.
प्रश्न 10.
एक रैखिक समीकरण यग्म जिसका अद्वितीय हल x = 2. y = -3 है, होगा :
(a) x + y = – 1; 2x – 3y = -5
(b) 2x + 5y = – 11; 4x + 10 y = 22
(c) 2x – y = 1; 3x + 2y = 0
(d) x – 4y – 14 = 0; 5x – y – 13 = 0
उत्तर:
(d) x – 4y – 14 = 0; 5x – y – 13 = 0
प्रश्न 11.
यदि x = a, y = b समीकरण युग्म x – y = 2 एवं x + y = 4 तब a और b के मान होंगे क्रमशः:
(a) 3 और 5
(b) 5 और 3
(c) 3 और 1
(d) -1 और -3
उत्तर:
(c) 3 और 1
प्रश्न 12.
अन्ना के पास केवल ₹1 और ₹ 2 के सिक्के हैं। यदि सिक्कों की कुल संख्या जो उसके पास हैं, 50 है जिनका कुल मूल्य ₹75 है तब ₹1 और ₹2 के सिक्कों की संख्या होगी क्रमशः:
(a) 35 और 15
(b) 35 और 20
(c) 15 और 35
(d) 25 और 25
उत्तर:
(d) 25 और 25
प्रश्न 13.
एक पिता की उम्र उसके पुत्र की उम्र से 6 गुनी है। चार वर्ष बाद पिता की उम्र अपने पुत्र की उम्र से चार गुनी हो जाएगी। पुत्र एवं पिता की वर्तमान उम्र (वर्षों में) क्रमशः है:
(a) 4 और 24
(b) 5 और 30
(c) 6 और 36
(d) 3 और 18
उत्तर:
(c) 6 और 36
प्रश्न 14.
समीकरण युग्म 5x – 15y = 8 और 3x – 9y = 245 के होंगे :
(a) एक हल
(b) दो हल
(c) अनन्तशः अनेक हल
(d) कोई हल नहीं।
उत्तर:
(c) अनन्तशः अनेक हल
प्रश्न 15.
दो अंकों की संख्या के अंकों का योग 9 है। यदि इसमें 27 जोड़ दिया जाए तो संख्या के अंक उलट जाते हैं। यह संख्या है –
(a) 25
(b) 72
(c) 63
(d) 36
उत्तर:
(d) 36
प्रश्न 16.
जब a1a2=b1b2≠c1c2 हो. तो समीकरण निकाय a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0: (2019)
(a) के दो हल होंगे
(b) को कोई हल नहीं होगा
(c) के अनंत अनेक हल होंगे
(d) का अद्वितीय हल होगा।
उत्तर:
(b) को कोई हल नहीं होगा
प्रश्न 17.
x – 2y = 0 और 2x + 4y – 20 = 0 रेखाएँ:(2019)
(a) प्रतिच्छेद करती हैं
(b) संपाती हैं
(c) समान्तर हैं
(d) इनमे से कोई नहीं।
उत्तर:
(a) प्रतिच्छेद करती हैं
रिक्त स्थानों की पूर्ति
प्रश्न 1.
एक ऐसा समीकरण, जिसका आलेख एक सरल रेखा होता है ………….. समीकरण कहलाता है।
उत्तर:
रैखिक
प्रश्न 2.
रैखिक समीकरण ax + by + c = 0 का आलेख एक ………….. रेखा है।
उत्तर:
सरल
प्रश्न 3.
x एवं’ का मान युग्म (x, y) जो दिए हुए समीकरण ax + by + c = 0 को सन्तुष्ट करता है, उस समीकरण का ………….. कहलाता है।
उत्तर:
हल
प्रश्न 4.
जब किसी समीकरण निकाय का कोई हल होता है, तब निकाय ………….. निकाय कहलाता है।
उत्तर:
संगत
प्रश्न 5.
जब किसी समीकरण निकाय का कोई भी हल नहीं होता, तब निकाय ………….. निकाय कहलाता है।
उत्तर:
असंगत।
जोड़ी मिलाइए
उत्तर:
- → (c)
- → (d)
- → (e)
- → (a)
- → (b)
सत्य/असत्य कथन
- समीकरण x + 2y = 5 में यदि x = 1, तो y = 2 होगा।
- वर्ग समीकरण का आरेख एक सरल रेखा होती है।
- रैखिक समीकरण युग्म के कोई हल नहीं हो सकते या एक अद्वितीय हल हो सकता है अथवा अनन्तशः अनेक हल भी हो सकते हैं।
- समीकरण युग्म x = a एवं y = b दो समान्तर रेखाओं को निरूपित करते हैं।
- ax + by + c = 0 प्रकार के समीकरण रैखिक युगपद समीकरण होते हैं।
उत्तर:
- सत्य
- असत्य
- सत्य
- असत्य
- सत्य।
एक शब्द/वाक्य में उत्तर
प्रश्न 1.
वह समीकरण निकाय क्या कहलाता है, जिसका कोई हल न हो?
उत्तर:
असंगत
प्रश्न 2.
वह समीकरण निकाय क्या कहलाता है जिसका कोई हल होता है।
उत्तर:
संगत
प्रश्न 3.
जिस समीकरण का आलेख एक सरल रेखा हो, वह क्या कहलाता है?
उत्तर:
रैखिक समीकरण
प्रश्न 4.
जब किसी समीकरण निकाय के अनन्तशः अनेक हल हों, तो उसका आलेख कैसा होगा?
उत्तर:
सम्पाती रेखाएँ
प्रश्न 5.
जब किसी समकरण निकाय का कोई अद्वितीय हल हो, तो उसका आलेख कैसा होगा?
उत्तर:
प्रतिच्छेदी रेखाएँ
प्रश्न 6.
जब किसी समीकरण निकाय का कोई हल न हो, तो उसका आलेख कैसा होगा?
उत्तर:
समान्तर रेखाएँ
प्रश्न 7.
यदि a1a2≠b1b2 तो निकाय का हल क्या होगा?
उत्तर:
अद्वितीय हल
प्रश्न 8.
यदि a1a2=b1b2≠c1c2, तो निकाय का हल क्या होगा?
उत्तर:
कोई हल नहीं
प्रश्न 9.
यदि a1a2=b1b2=c1c2, तो निकाय का हल क्या होगा?
उत्तर:
अनन्ततः अनेक हल।