HR 10 Maths

Haryana Board 10th Class Maths Solutions Chapter 4 द्विघात समीकरण Exercise 4.4

Haryana Board 10th Class Maths Solutions Chapter 4 द्विघात समीकरण Exercise 4.4

HBSE 10th Class Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4

प्रश्न 1.
निम्नलिखित द्विघात समीकरणों के मूलों की प्रकृति ज्ञात कीजिए। यदि मूलों का अस्तित्व हो तो उन्हें ज्ञात कीजिए
(i) 2x2 – 3x + 5 = 0
(ii) 3x2 – 4√3x + 4 = 0
(iii) 2x2 – 6x + 3 = 0
हल :
(i) यहाँ पर,
2x2 – 3x + 5 = 0
a = 2, b = – 3,c = 5
विविक्तकर = b2 – 4ac
= (-3)2 – 4(2)(5)
= 9 – 40 =-31 <0.
अतः दिए गए द्विघात समीकरण के वास्तविक मूलों का अस्तित्व नहीं है।

(ii) यहाँ पर,
3x2– 4√3x + 4 = 0
a = 3, b = -4√3,c = 4
विविक्तकर = b2 – 4ac
= (-4√3)2-4(3)(4)
= 48 – 48 = 0
अतः दिए गए द्विघात समीकरण के दो बराबर वास्तविक मूल हैं।
अब द्विघाती सूत्र के उपयोग से,


HBSE 10th Class Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4 2

(iii) यहाँ पर,
2x2 – 6x + 3 = 0.
a = 2, b = -6, c = 3
विविक्तकर = b2 – 4ac
= (-6)2 – 4(2)(3)
= 36 – 24 = 12 > 0
अतः दिए गए द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं। अब द्विघाती सूत्र की सहायता से,

प्रश्न 2.
निम्नलिखित प्रत्येक द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
(i) 2x2 + kx + 3 = 0
(ii) ke(x – 2) + 6 = 0
हल :
(i) यहाँ पर,
2x2 + kx + 3 = 0
a = 2, b = k, c = 3
विविक्तकर = b2 – 4ac
= (k)2 – 4(2)(3)
= K2 – 24
हम जानते हैं कि द्विघात समीकरण के दो बराबर वास्तविक मूलों के लिए आवश्यक है कि,

(ii) यहाँ पर,
kx(x – 2) + 6 = 0
kx2 – 2 kx + 6 = 0
a = k, b = -2k, c = 6
विविक्तकर = b2 – 4ac = 0
= (-2k)2 – 4(k)(6) = 0
= 4k2 – 24k
हम जानते हैं कि द्विघात समीकरण के दो बराबर वास्तविक मूलों के लिए आवश्यक है कि,
b2 – 4ac = 0
4k2 – 24k = 0
4k(k – 6) = 0
4k = 0 या k – 6 = 0
k= 0 या k = 6
परंतु k = 0 असंभव है।
अतः k = 6 के लिए दिए गए द्विघात समीकरण के दो बराबर मूल होंगे।

प्रश्न 3.
क्या एक ऐसी आम की बगिया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800m- हो? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।
हल:
माना आम की बगिया की चौड़ाई = x मी०
तो आम की बगिया की लंबाई = 2x मी०
अतः आम की बगिया का क्षेत्रफल = लंबाई x चौड़ाई
= 2x x x वर्ग मी०
= 2x2 वर्ग मी०
प्रश्नानुसार,
2x2 = 800
x2 = 400
x = 400 = ± 20
परंतु x = -20 असंभव है क्योंकि भुजाएँ ऋणात्मक नहीं होती।
अतः आम की बगिया की लंबाई = 2 x 20 = 40 मी०
उत्तर तथा आम की बगिया की चौड़ाई = 20 मी०

प्रश्न 4.
क्या निम्न स्थिति संभव है? यदि है तो उनकी वर्तमान आयु ज्ञात कीजिए। दो मित्रों की आयु का योग 20 वर्ष है। चार वर्ष पूर्व उनकी आयु (वर्षों में) का गुणनफल 48 था।
हल :
माना एक मित्र की वर्तमान आयु = x वर्ष ।
तो दूसरे मित्र की वर्तमान आयु = (20 -x) वर्ष
प्रश्नानुसार,
(x – 4)(20 – x – 4) = 48
(x – 4)(16 – x) = 48
16x – x2 – 64 + 4x = 48 -x2 + 20x -64-48 = 0
-x2 + 20x – 112 = 0
x2 – 20x + 112 = 0 (दोनों ओर -1 से गुणा करने पर)
a = 1, b = -20,c = 112
विविक्तकर = b2 – 4ac
= (-20)2 – 4(1)(112)
= 400 – 448 = -48 <0
इस द्विघात समीकरण के मूल वास्तविक नहीं है,
अतः दी गई स्थिति संभव नहीं है।

प्रश्न 5.
क्या परिमाप 80m तथा क्षेत्रफल 400m- के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।
हल :
यहाँ पर
पार्क का परिमाप = 80 मी०
तो पार्क का अर्धपरिमाप = 80/2 = 40 मी०
माना पार्क की लंबाई = x मी०
तो पार्क की चौड़ाई = (40-x) मी०
पार्क का क्षेत्रफल = 400 मी०2
x(40-x) = 400
40x-x2 = 400
x2 – 40x + 400 = 0
a = 1, b = -40, c = 400
विविक्तकर = b2 – 4ac
= (40)2 – 4(1)(400)
= 1600-1600 = 0
इस द्विघात समीकरण के दो बराबर वास्तविक मूल संभव हैं।
अतः दी गई स्थिति संभव है।
अब द्विघाती सूत्र के उपयोग से
HBSE 10th Class Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4 4
= 20 व 20
अतः पार्क की लंबाई = 20 मी०
तथा पार्क की चौड़ाई = 40 – 20 = 20 मी०

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *