MP 7 Maths

MP Board Class 7th Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1

MP Board Class 7th Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1

MP Board Class 7th Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1

प्रश्न 1.
∆PQR में भुजा QR¯¯¯¯¯¯¯¯ का मध्य-बिन्दु D है
PM¯¯¯¯¯¯¯¯¯ ….है।
PD….है।
क्या QM= MR ?


हल:
PM¯¯¯¯¯¯¯¯¯, शीर्षलम्ब है।
PD¯¯¯¯¯¯¯¯, माध्यिका है।
नहीं, QM ≠ MR, क्योंकि QR का मध्य-बिन्दु M नहीं है।

प्रश्न 2.
निम्न के लिए अनुमान से आकृति खींचिए :
(a) ∆ABC में, BE एक माध्यिका है।
(b) ∆PQR में, PQ और PR त्रिभुज के शीर्षलम्ब हैं।
(c) ∆XYZ में, YL एक शीर्षलम्ब उसके बहिर्भाग में है।
हल:
(a) संलग्न चित्र में, BE,∆ABC की माध्यिका है।

(b) समकोण ∆PQR में, PQ तथा PR त्रिभुज के शीर्षलम्ब हैं।

(c) संलग्न चित्र में, YL, ∆XYZ का शीर्षलम्ब है।

प्रश्न 3.
आकृति खींचकर पुष्टि कीजिए कि एक समद्विबाहु त्रिभुज में शीर्षलम्ब व माध्यिकाएँ एक ही रेखाखण्ड हो सकता है।
हल:
माना कि ∆ABC एक समद्विबाहु त्रिभुज है, जिसकी भुजा AB = AC
त्रिभुज की माध्यिका AM खींची। अब चाँद की सहायता से ∠AMC को मापते हैं।

मापने पर, ∠AMC = 90°
∴ AM ⊥ BC
अत: ∆ABC की, अत: AM¯¯¯¯¯¯¯¯¯ माध्यिका और शीर्षलम्ब दोनों ही है।

इन्हें कीजिए

प्रश्न 1.
एक त्रिभुज ABC खींचिए और इसकी एक भुजा BC¯¯¯¯¯¯¯¯ को एक ओर बढ़ाइए चित्र (i)]। शीर्ष C पर बने कोण ACD पर ध्यान दीजिए। यह कोण ∆ABC के बर्हिभाग में स्थित है। हम इसे ∆ABC के शीर्ष पर बना एक बाह्य कोण कहते हैं।

स्पष्ट है कि ∠BCA तथा ∠ACD परस्पर संलग्न कोण हैं। त्रिभुज के शेष दो कोण, ∠A तथा ∠B बाह्य कोण ACD के दो सम्मुख अन्त:कोण या दूरस्थ अन्तःकोण कहलाते हैं। अब काटकर या अक्स (Trace copy) लेकर ∠A तथा ∠B एक-दूसरे के संलग्न मिलाकर ∠ACD पर रखिए जैसा कि चित्र (ii) में दिखाया गया है। क्या वे दोनों कोण ACD को पूर्णतया आच्छादित करते हैं ? क्या आप कह सकते हैं,
m∠ACD = m∠A + m∠B?
हल:
हाँ, वे दोनों कोण ACD को पूर्णतया आच्छादित करते हैं।
हाँ, m∠ACD = m∠A + m∠B

प्रश्न 2.
छात्र इस क्रियाकलाप को स्वयं करें।
पाठ्य-पुस्तक पृष्ठ संख्या # 130

सोचिए, चर्चा कीजिए एवं लिखिए

प्रश्न 1.
एक त्रिभुज के लिए बाह्य कोण भिन्न-भिन्न प्रकार से बनाये जा सकते हैं। इनमें से तीन भिन्न प्रकार के दिखाए गए हैं।

इनके अतिरिक्त तीन और प्रकार से भी बाह्य कोण बबनाये जा सकते हैं। इन्हें भी अनुमान से बनाइए।
हल:
तीन अन्य प्रकार से बने बाह्य कोण –

प्रश्न 2.
किसी त्रिभुज के एक शीर्ष पर बने दोनों बाह्य कोण क्या परस्पर समान होते हैं ?
हल:

हाँ ∆ABC की भुजा AC व BC को आगे बढ़ाने पर हमें क्रमश: ∠BCP व ∠ACQ प्राप्त होते हैं जो कि शीर्षाभिमुख हैं।
∴ ∠BCP = ∠ACQ
∴ त्रिभुज के प्रत्येक शीर्ष पर एक बाह्य कोणों का एक युग्म होगा जो आपस में समान होंगे।

प्रश्न 3.
किसी त्रिभुज के एक बाह्य कोण और उसके संलग्न अन्तःकोण के योग के बारे में आप क्या कह सकते हैं?
हल:
एक त्रिभुज के एक बाह्य कोण और उसका संलग्न कोण रैखिक युग्म बनाते हैं।
∴ बाह्य कोण + अन्त: कोण = 180°

सोचिए, चर्चा कीजिए एवं लिखिए

प्रश्न 1.
प्रत्येक दशा में अन्तः सम्मुख कोणों के बारे में आप क्या कह सकते हैं, जबकि बाह्य कोण है –
(i) एक समकोण
(ii) एक अधिककोण
(iii) एक न्यूनकोण।
हल:
(i) प्रत्येक अन्तः सम्मुख कोण न्यून कोण होगा।
(ii) कम-से-कम एक अन्तः सम्मुख कोण न्यूनकोण होना चाहिए।
(iii) प्रत्येक अन्तः सम्मुख कोण न्यून कोण होगा।

प्रश्न 2.
क्या किसी त्रिभुज का कोई बाह्य कोण एक सरल कोण भी हो सकता है?
हल:
नहीं, किसी त्रिभुज का कोई बाह्य कोण सरल कोण नहीं हो सकता, क्योंकि अन्तः कोण शून्य नहीं हो सकते हैं।

प्रयास कीजिए

प्रश्न 1.
किसी त्रिभुज में एक बाह्य कोण की माप 70° है और उसके अन्तः सम्मुख कोणों में से एक की माप 25° है। दूसरे अन्तः सम्मुख कोण की माप ज्ञात कीजिए।
हल:
बाह्य कोण = 70°, अन्तः सम्मुख कोण = 25°
माना कि दूसरा अन्तः सम्मुख कोण = x°

पाठ्य-पुस्तक पृष्ठ संख्या # 131

अत: दोनों अन्तः सम्मुख कोणों का योग = बाह्य कोण
∴ x° + 250 = 70°
या x° = 70° – 25° = 45°

प्रश्न 2.
किसी त्रिभुज के दो अन्तः सम्मुख कोणों की माप 60° तथा 80° है। उसके बाह्य कोण की माप ज्ञात कीजिए।
हल:
अन्तः सम्मुख कोण = 60° व 80°
∵ बाह्य कोण = दो सम्मुख अन्त:कोणों का योग
∴ बाह्य कोण = 60° + 80° = 140°

प्रश्न 3.
क्या इस चित्र में कोई त्रुटि है? टिप्पणी करें।
हल:
हम जानते हैं कि किसी त्रिभुज का बाह्य कोण अपने दोनों सम्मुख अन्त:कोणों के योग के बराबर होता है।
यहाँ प्रत्येक अन्त:कोण 50° है और बाह्य कोण भी 50° है।

∴ इन मापों से त्रिभुज नहीं बन सकता है।
(∵ 50° ≠ 50° + 50°)

MP Board Class 7th Maths Solutions

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *