PBN 10th Maths

PSEB Solutions for Class 10 Maths Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Exercise 5.2

PSEB Solutions for Class 10 Maths Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Exercise 5.2

PSEB 10th Class Maths Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.2

ਪ੍ਰਸ਼ਨ 1.
ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਵਿਚ ਖ਼ਾਲੀ ਸਥਾਨਾਂ ਨੂੰ ਭਰੋ, ਜਿੱਥੇ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ‘a’, ਸਾਂਝਾ ਅੰਤਰ ‘d’ ਅਤੇ n ਵਾਂ ਪਦ an ਹੈ ।


ਹੱਲ:
(i) a = 7, d = 3, n = 8
∵ an = a + (n – 1) d
∴ a8 = 7 + ( 8 – 1) 3
= 7 + 21 = 28

(ii) a = – 18, n = 10, an = 0
∵ an = a + (n – 1) d
∴ a10 = – 18 + (10 – 1)d
0 = – 18 + 9d
9d = 18
d = 18/9 = 2

(iii) d = -3, n= 18, an = -5
∵ an = a + (n – 1) d
∴ a18 = a + (18 – 1) (-3)
-5 = a – 51
a = – 5 + 51 = 46

(iv) a = – 18.9, d = 2.5, an = 3.6
∵ an = a + (n – 1) d
∴ 3.6 = – 18. 9 + (n – 1) 2.5
3.6 + 18.9 = (n – 1) 2.5
(n – 1) 2.5 = 22.5
n – 1 = 22.5/2.5 = 9
n = 9 + 1 = 10

(v) a = 3.5, d = 0, n = 105
∵ an = + (n – 1) d
∴ an = 3.5 + (105 – 1) 0
an = 3.5 + 0 = 3.5

2. ਹੇਠ ਦਿੱਤਿਆਂ ਵਿਚੋਂ ਸਹੀ ਉੱਤਰ ਚੁਣੋ ਅਤੇ ਉਸਦਾ ਕਾਰਣ ਦੱਸੋ :

ਪ੍ਰਸ਼ਨ (i).
AP: 10, 7, 4……., ਦਾ 30 ਵਾਂ ਪਦ ਹੈ :
(A) 97
(B) 77
(C) -77
(D) -87
ਉੱਤਰ:
ਦਿੱਤੀ ਗਈ A.P. ਹੈ : 10, 7, 4, …..
T1 = 10, T2 = 7, T3 = 4
T2 – T1 = 7 – 10 = – 3
T3 – T2 = 4 – 7 = -3
∵ T2 – T1 = T3 – T2 = – 3 = d
∴ Tn = a + (n – 1) d
T30 = 10 + (30 – 1) (-3)
= 10 – 87 = -77
∴ ਸਹੀ ਉੱਤਰ (C) ਹੈ ।

ਪ੍ਰਸ਼ਨ 3.
ਹੇਠ ਦਿੱਤੀਆਂ ਅੰਕ ਗਾਣਿਤਕ ਲੜੀਆਂ (A.P.) ਵਿੱਚ ਖ਼ਾਲੀ ਖ਼ਾਨਿਆਂ ਦੇ ਪਦਾਂ ਨੂੰ ਪਤਾ ਕਰੋ :
PSEB 10th Class Maths Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.2 2
ਹੱਲ:
ਮੰਨ ਲਉ ਦਿੱਤੀ ਗਈ A.P. ਦਾ ਪਹਿਲਾ ਪਦ a ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ d ਹੈ !
(i) ਇੱਥੇ , T1 = a = 2
T3 = a + 2d = 26
2 + 2d = 26
2d = 26 – 2 = 24
d = 24/2 = 12
∴ T2 = a + d
= 2 + 12 = 14

(ii) ਇੱਥੇ T2 = a + d = 13 …(1)
T4 = a + 3d = 3 …(2)
(2) – (1) ਤੋਂ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ।

d ਦਾ ਇਹ ਮੁੱਲ (1), ਵਿਚ ਰੱਖਣ ‘ਤੇ
a – 5 = 13
a = 13 + 5 = 18
∴ T1 = a = 18
T2 = a + 2d = 18 + 2 (-5)
18 – 10 = 8

(iv) ਇੱਥੇ T1 = a = -4
T6 = a + 5d = 6
-4 + 5d = 6
5d = 6 + 4
5d = 10
d = 10/5 = 2
T2 = a + d = -4 + 2 = -2
T3 = a + 2d = -4 + 2(2)
= -4 + 4 = 0
T4 = a + 3d = -4 + 3 (2)
= -4 + 6 = 2
T5 = a + 4d = -4 + 4 (2)
= – 4 + 8 = 4

(v) ਇੱਥੇ T2 = a + d = 38 …(1)
T6 = a + 5d = – 22 …(2)
ਹੁਣ (2) – (1) ਤੋਂ ਮਿਲਦਾ ਹੈ।
PSEB 10th Class Maths Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.2 4
d ਦਾ ਮੁੱਲ (1), ਵਿਚ ਭਰਨ ‘ਤੇ
a + (-15) = 38
a = 38 + 15 = 53
∴ T1 = a = 53
T3 = a + 2d = 53 + 2 (-15)
= 53 – 30 = 23
T4 = a + 3d = 53 + 3 (15)
= 53 – 45 = 8
T5 = a + 4d = 53 + 4 (-15)
=53 – 60 = -7

ਪ੍ਰਸ਼ਨ 4.
A.P.: 3, 8, 13, 18,….ਦਾ ਕਿੰਨਵਾਂ ਪਦ 78 ਹੈ ?
ਹੱਲ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ: 3, 8, 13, 18, …..
T1 = 3, T2 = 8, T3 = 13, T4 = 18
T2 – T1 = 8 – 3 = 5
T3 – T2 = 13 – 8 = 5
∵ T2 – T1 = T3 – T2 = 5 = d
Tn = a + (n – 1)d ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ
78 = 3 + (n – 1) 5
5(n -1) = 78 – 3
n – 1 = 75/5 = 15
n = 15 + 1 = 16
∴ ਦਿੱਤੀ ਗਈ A.P. ਦਾ 16ਵਾਂ ਪਦ 78 ਹੈ ।

5. ਹੇਠਾਂ ਦਿੱਤੀ ਅੰਕਗਣਿਤਕ ਲੜੀ ਵਿੱਚ ਹਰੇਕ ਵਿੱਚ ਕਿੰਨੇ ਪਦ ਹਨ ?

ਪ੍ਰਸ਼ਨ (i).
7, 13, 19,…, 205
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ : 7, 13, 19,…
T1 = 7, T2 = 13, T3 = 19
T2 – T1 = 13 – 7 = 6
T3 – T2 = 19 – 13 = 6
∵ T2 – T1 = T3 – T2 = 6 = d.
ਸੂਤਰ Tn = a + (n – 1) d ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ
205 = 7+ (n – 1)6
(n – 1)6 = 205 – 7
(n – 1) = 196/6
n – 1 = 33
n = 33 + 1 = 34
∴ 34ਵਾਂ ਪਦ 205 ਹੈ ।

ਪ੍ਰਸ਼ਨ 6.
ਕੀ A.P. 11, 8, 5, 2…. ਦਾ ਇੱਕ ਪਦ -150 ਹੈ ? ਕਿਉਂ ?
ਹੱਲ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ
11, 8, 5, 2…..
T1 = 11, T2 = 8, T3 = 5, T4 = 2
T2 – T1 = 8 – 11 = -3
T3 – T2 = 5 – 8 = – 3
T4 – T3 = 2 – 5 = -3
∵ T2 – T1 = T3 – T2
= T4 – T3 = -3 = d
ਮੰਨ ਲਉ -150 ਦਿੱਤੀ ਹੋਈ A.P. ਦਾ ਇਕ ਪਦ ਹੈ !
Tn = -150
a + (n – 1) d = -150
11 + (n – 1) (-3) = – 150
(n – 1) (-3) =- 150 – 11 = -161

ਪ੍ਰਸ਼ਨ 7.
ਉਸ A.P. ਦਾ 31ਵਾਂ ਪਦ ਪਤਾ ਕਰੋ ਜਿਸਦਾ 11ਵਾਂ ਪਦ 38 ਹੈ ਅਤੇ 16ਵਾਂ ਪਦ 73 ਹੈ ।
ਹੱਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d’ ਦਿੱਤੀ ਹੋਈ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
T11 = 38
a + (11 – 1) d = 38
[∵ Tn = a + (n – 1) d]
a + 10 d = 38 …(1)
ਅਤੇ T16 = 73
a + (16 – 1) d = 73
[∵ Tn = a + (n – 1) d]
a + 15 d = 73 …(2)
ਹੁਣ (2) – (1) ਤੋਂ

d ਦਾ ਮੁੱਲ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ .
a+ 10 (7) = 38
a + 70 = 38
a = 38 – 70 = -32
ਹੁਣ T31 = a + (31 – 1) d = -32 + 30 (7)
= -32 + 210 = 178

ਪ੍ਰਸ਼ਨ 8.
ਇੱਕ A.P. ਵਿੱਚ 50 ਪਦ ਹਨ, ਜਿਸਦਾ ਤੀਸਰਾ ਪਦ 12 ਹੈ ਅਤੇ ਅੰਤਿਮ ਪਦ 106 ਹੈ । ਇਸ ਦਾ 29ਵਾਂ ਪਦ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d’ ਦਿੱਤੀ ਹੋਈ A.P. ਦਾ । ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
ਦਿੱਤਾ ਹੈ T3 = 12
a + (3 – 1) d = 12
|∵ Tn = a + (n – 1)d
a + 2d = 12 …..(1)
∴ ਅੰਤਿਮ ਪਦ = T50 = 106
a + (50 – 1) d = 106
|∵ Tn = a+ (n – 1) d
a + 49 d = 106 …(2)
ਹੁਣ (2) – (1) ਤੋਂ ਮਿਲਦਾ ਹੈ।
PSEB 10th Class Maths Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.2 6
d ਦਾ ਮੁੱਲ (1) ਵਿਚ ਰੱਖਣ ‘ਤੇ
a + 2(2) = 12
a + 4 = 12
a + 12 – 4 = 8
ਹੁਣ T29 = a + (29 – 1) d
= 8 + 28 (2)
= 8 + 56 = 64

ਪ੍ਰਸ਼ਨ 9.
ਜੇਕਰ ਕਿਸੇ A.P.ਦਾ ਤੀਸਰਾ ਅਤੇ 9ਵਾਂ ਪਦ ਕੁਮਵਾਰ 4 ਅਤੇ – 8 ਹੋਵੇ, ਤਾਂ ਇਸਦਾ ਕਿੰਨਵਾਂ ਪਦ ਸਿਫ਼ਰ ਹੋਵੇਗਾ ?
ਹਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d’ ਕੁਮਵਾਰ ਦਿੱਤੀ ਹੋਈ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ
ਦਿੱਤਾ ਹੈ T3 = 4
a + (3 – 1) d = 4
|∵ Tn = a + (n – 1) d
a + 2d = 4
ਅਤੇ T9 = – 8
a + (9 – 1) d = – 8
|∵ Tn = a + (n – 1) d
a + 8d = – 8 …(2)
ਹੁਣ (2) -(1) ਤੋਂ ਮਿਲਦਾ ਹੈ।
PSEB 10th Class Maths Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.2 7
d ਦਾ ਇਹ ਮੁੱਲ (1) ਵਿਚ ਰੱਖਣ ‘ਤੇ
a + 2 (-2) = 4
a – 4 = 4
a = 4 + 4 = 8
ਹੁਣ Tn = 0
a + (n – 1) d = 0
8 + (n – 1) (-2) = 0
-2 (n – 1) = – 8
n – 1 = 4
n = 4 + 1 = 5
∴ A.P. ਦਾ ਪੰਜਵਾਂ ਪਦ ਸਿਫ਼ਰ ਹੈ ।

ਪ੍ਰਸ਼ਨ 10.
ਕਿਸੇ A.P. ਦਾ 17ਵਾਂ ਪਦ ਉਸਦੇ 10ਵੇਂ ਪਦ ਤੋਂ 7 ਤੋਂ ਵੱਧ ਹੈ । ਇਸਦਾ ਸਾਂਝਾ ਅੰਤਰ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d ਕੁਮਵਾਰ ਦਿੱਤੀ ਹੋਈ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
ਹੁਣ T17 = a (17 – 1)d
= a + 16d
T10 = a + (10 – 1) d
= a + 9d
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
T17 – T10 = 7
(a + 16d) – (a + 9d) = 7
a + 16d – a – 9d = 7
7d = 7
d = 7/7 = 1
∴ ਸਾਂਝਾ ਅੰਤਰ 1 ਹੈ ।

ਪ੍ਰਸ਼ਨ 11.
A.P.:3, 15, 27, 39,.. ਦਾ ਕਿੰਨਵਾ ਪਦ ਉਸਦੇ 54ਵੇਂ ਪਦ ਤੋਂ 132 ਵੱਧ ਹੋਵੇਗਾ ?
ਹੱਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d’ ਕੁਮਵਾਰ ਦਿੱਤੀ ਹੋਈ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
ਦਿੱਤੀ ਗਈ A.P. ਹੈ : 3, 15, 27, 39, …
T1 = 3, T2 = 15,
T3 = 27, T4 = 39
T2 – T2 = 15 – 3 = 12
T3 – T2 = 27 – 15 = 12
∴ d = T2 – T1 = T3 – T2 = 12
T54 = a + (54 – 1) d
= 3 + 53 (12)
= 3 + 636 = 639
ਪ੍ਰਸ਼ਨ ਦੇ ਅਨੁਸਾਰ
Tn = T54 + 132
a + (n – 1) d = 639 + 132
3 + (n – 1) (12) = 771
(n – 1) 12 = 771 – 3 = 768
n – 1 = 768/12 = 64
n = 64 + 1 = 65
∴ A.P. ਦਾ 65ਵਾਂ ਪਦ ਉਸਦੇ 54ਵੇਂ ਪਦ ਤੋਂ 132 ਜ਼ਿਆਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 12.
ਦੋ ਅੰਕ ਗਣਿਤਕ ਲੜੀਆਂ ਦਾ ਸਾਂਝਾ ਅੰਤਰ ਬਰਾਬਰ ਹੈ । ਜੇਕਰ ਇਹਨਾਂ ਦੇ 100ਵੇਂ ਪਦਾਂ ਦਾ ਅੰਤਰ 100 ਹੈ ਤਾਂ ਇਹਨਾਂ ਦੇ 1000ਵੇਂ ਪਦਾਂ ਦਾ ਅੰਤਰ ਕੀ ਹੋਵੇਗਾ ?
ਹੱਲ:
ਮੰਨ ਲਉ “a’ ਅਤੇ ‘d’ ਪਹਿਲੀ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ।
‘A’ ਅਤੇ ‘d’ ਦੂਸਰੀ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
ਪ੍ਰਸ਼ਨ ਦੇ ਅਨੁਸਾਰ
[ਦੂਸਰੀ A.P. ਦਾ T100] – ਪਹਿਲੀ A.P. ਦਾ T100] = 100
[A+ (100 – 1)d] – [a + (100 – 1)d] = 100
A + 99 d – a – 99 d = 100
A – a = 100 …(1)
ਹੁਣ [ਦੂਸਰੀ A.P. ਦਾ T1000] – [ਪਹਿਲੀ A.P. ਦਾ T1000]
= [A + (1000 – 1) d] – a + (1000 – 1) d]
= A + 999d – a – 999 d
= A – a
= 100 [(1) ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ]

ਪ੍ਰਸ਼ਨ 13.
ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੀਆਂ ਕਿੰਨੀਆਂ ਸੰਖਿਆਵਾਂ 7 ਨਾਲ ਭਾਜਯੋਗ ਹਨ ।
ਹੱਲ:
7 ਨਾਲ ਵੰਡੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਤਿੰਨ ਅੰਕਾਂ , ਵਾਲੀਆਂ ਸੰਖਿਆਵਾਂ ਹਨ ।
105, 112, 119,…., 994 .
a = T1 = 105,
T2 = 112, T3 = 119
Tn = 994
T2 – T1 = 112 – 105 = 7
T3 – T2 = 119 – 112 = 7
∴ d = T2 – T1
= T3 – T2 = 7
ਦਿੱਤਾ ਹੈ Tn = 994
a + (n – 1) d = 994
105 + (n – 1) 7 = 994
(n – 1) 7 = 994 – 105
(n – 1) 7 = 889
n – 1 = 889/7 = 123
n = 123 + 1 = 124.
∴ ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੀ 124 ਸੰਖਿਆਵਾਂ 7 ਨਾਲ ਵੰਡੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਹਨ ।

ਪ੍ਰਸ਼ਨ 14.
10 ਅਤੇ 250 ਦੇ ਵਿਚਕਾਰ 4 ਦੇ ਕਿੰਨੇ ਗੁਣ ਹਨ ?
ਹੱਲ:
10 ਅਤੇ 250 ਦੇ ਵਿਚ 4 ਦੇ ਗੁਣਜ ਹਨ
12, 16, 20, 24, … 248
a = T1 = 12,
T2 = 16, T3 = 20
Tn = 248
T2 – T1 = 16 – 12 =4
T3 – T2 = 20 – 16 = 4
∴ d = T2 – T1 = T3 – T2 = 4
ਦਿੱਤਾ ਹੈ Tn = 248
a + (n – 1)d = 248
12 + (n – 1) 4 = 248
4 (n – 1) = 248 – 12 = 236
n – 1 = 236/4 = 59
n = 59 + 1 = 60
∴ 10 ਅਤੇ 250 ਦੇ ਵਿਚ 4 ਦੇ ਗੁਣਜ 60 ਹਨ ।

ਪ੍ਰਸ਼ਨ 15.
n ਦੇ ਕਿਹੜੇ ਮੁੱਲ ਦੇ ਲਈ, ਦੋਵੇਂ ਅੰਕ ਗਣਿਤਕ ਲੜੀਆਂ 63, 65, 67… ਅਤੇ 3, 10, 17… ਦੇ ਵੇਂ ਪਦ ਬਰਾਬਰ ਹੋਣਗੇ ?
ਹੱਲ:
ਦਿੱਤੀ ਗਈ A.P. ਹੈ 63, 65, 67…….
ਇੱਥੇ a = T1 = 63,
T2 = 65, T3 = 67
T2 – T1 = 65 – 63 = 2
T3 – T2 = 67 – 65 =2
∴ d = T2 – T1 = T3 – T2 = 2
ਦੁਸਰੀ A.P. ਹੈ 3, 10, 17, ….
ਇੱਥੇ a = T1 = 3, T2 = 10, T3 = 17
T2 – T1 = 10 – 3 = 7
T3 – T2 = 17 – 10 = 7
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
[ਪਹਿਲੀ A.P ਦਾ ਵਾਂ ਪਦੀ] = [ਦੂਸਰੀ A.P. ਦਾ ਸਵਾਂ ਪ]
63 + (n – 1) 2 = 3 + (n – 1)7
63 + 2n – 2 = 3 + 7n -7
61 + 2n = 7n – 4
2n – 7n = -4 – 61
-5n = – 65
n = 65/5 = 13

ਪ੍ਰਸ਼ਨ 16.
ਉਹ A.P. ਪਤਾ ਕਰੋ ਜਿਸਦਾ ਤੀਜਾ ਪਦ 16 ਹੈ ਅਤੇ 7ਵਾਂ ਪਦ 5ਵੇਂ ਪਦ ਨਾਲੋਂ 12 ਵੱਧ ਹੈ ।
ਹੱਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d’ ਦਿੱਤੀ ਹੋਈ A.P. ਦਾ ਪਹਿਲਾਂ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ।
ਦਿੱਤਾ ਹੈ T3 = 16
a + (3 – 1) d = 16
a + 2d = 16 …(1)
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ T7 – T5 = 12.
a + (7 – 1) d – [a + (5 – 1) d] = 12
a + 6d – a – 4d = 12
2d = 12
d = 12/2 = 6
d ਦਾ ਇਹ ਮੁੱਲ (1), ਵਿੱਚ ਰੱਖਣ ‘ਤੇ
a + 2 (6) = 16
a = 16 – 12 =4
∴ ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ 4, 10, 16, 22, 28,……

ਪ੍ਰਸ਼ਨ 17.
A.P. : 3, 8, 13…, 253 ਵਿੱਚ ਅੰਤਿਮ ਪਦ ਤੋਂ 20 ਵਾਂ ਪਦ ਪਤਾ ਕਰੋ ।
ਹਲ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ 3, 8, 13, …, 253
ਇੱਥੇ a = T1 = 3, T2 = 8, T3 = 13
Tn = 253
T2 – T1 = 8 – 3 = 5
T3 – T2 = 13 – 8 = 5
∴ d = T2 – T1 = T3 – T2 = 5
ਹੁਣ Tn = 253
3 + (n – 1) 5 = 253
(n – 1) 5 = 250
n – 1 = 250/5 = 50 |∵ Tn = a + (n – 1)d
n – 1 = 250/5 = 50
(n – 1) = 50
n = 50 + 1 = 51
∴ AP ਦੇ ਅੰਤਿਮ ਪਦ ਤੋਂ 20ਵਾਂ ਪਦ
= (ਪਦਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ) – 20 +1
= 51 – 20 + 1 = 32ਵਾਂ ਪਦੇ
∴ AP ਦੇ ਅੰਤਿਮ ਪਦ ਤੋਂ 20ਵਾਂ ਪਦ
= ਸ਼ੁਰੂ ਤੋਂ 32ਵਾਂ ਪਦ
= 3 + (32 – 1) 5 |∵ T = a + (n – 1) d
= 3 + 31 × 5
= 3 + 155 = 158

ਪ੍ਰਸ਼ਨ 18.
ਕਿਸੇ A.P. ਦੇ ਚੌਥੇ ਅਤੇ 8ਵੇਂ ਪਦਾਂ ਦਾ ਜੋੜ 4 ਹੈ ਅਤੇ 6ਵੇਂ ਅਤੇ 10ਵੇਂ ਪਦਾਂ ਦਾ ਜੋੜ 4 ਹੈ । ਇਸ A.P. ਦੇ ਪਹਿਲੇ ਤਿੰਨ ਪਦ ਪਤਾ ਕਰੋ ।
ਹਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d` ਦਿੱਤੀ ਹੋਈ A.P. ਦੇ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
ਪ੍ਰਸ਼ਨ ਦੀ ਪਹਿਲੀ ਸ਼ਰਤ ਅਨੁਸਾਰ
T4 + T8 = 24
a + (4 – 1) d + a + (8 – 1) d = 24
|∵ Tn = a + (n – 1)d
2a + 3d + 7d = 24
2a + 10d = 24
a + 5d = 12 …..(1)
ਪ੍ਰਸ਼ਨ ਦੀ ਦੂਸਰੀ ਸ਼ਰਤ ਅਨੁਸਾਰ
T6 + T10 = 44
a + (6 – 1)d + a + (10 – 1)d = 44
|∵ Tn = a + (n – 1) d
2a + 5d + 9d = 44 ….(2)
2a + 14d = 4
a + 7d = 22
(2) – (1) ਤੋਂ ਮਿਲਦਾ ਹੈ
PSEB 10th Class Maths Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.2 8
‘d’ ਦਾ ਇਹ ਮੁੱਲ (1) ਵਿਚ ਰੱਖਣ ‘ਤੇ ..
a + 5 (5) = 12
a + 25 = 12
a = 12 – 25 = – 13
T1 = a = -13
T2 = a + d
= – 13 + 5 = – 8
T2 = a + 2d = – 13 + 2 (5)
= -13 + 10 = -3
∴ ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ – 13, – 8, -3,…

ਪ੍ਰਸ਼ਨ 19.
ਸੁਬਾ ਰਾਓ ਨੇ 1995 ਵਿੱਚ ₹ 5000 ਪ੍ਰਤਿ ਮਹੀਨਾ ਤਨਖਾਹ ‘ਤੇ ਕੰਮ ਸ਼ੁਰੂ ਕੀਤਾ ਅਤੇ ਹਰੇਕ ਸਾਲ ₹ 200 ਦਾ ਸਾਲਾਨਾ ਵਾਧਾ ਪ੍ਰਾਪਤ ਕੀਤਾ । ਕਿਹੜੇ ਸਾਲ ਉਸਦੀ ਤਨਖਾਹ ₹ 7000 ਹੋ ਜਾਵੇਗੀ ?
ਹੱਲ:
ਸੂਬਾ ਰਾਓ ਦੀ ਅਰੰਭਿਕ ਤਨਖ਼ਾਹ = ₹ 5000
ਸਾਲਾਨਾ ਵਾਧਾ = ₹ 200 ਮੰਨ
ਲਉ ‘n’ ਸਾਲਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸਦਾ ਹੈ
∴ ਪਹਿਲਾ ਪਦ = a = ₹ 5000
ਸਾਂਝਾ ਅੰਤਰ = d = ₹ 200
ਅਤੇ Tn = ₹ 7000
ਹੁਣ 5000 + (n – 1) 200 = 7000
|∵ Tn = a + (n – 1) d
(n – 1) 200 = 7000 – 5000
(n – 1) 200 = 2000
n – 1 = 2000/200 = 10
n – 1 = 10
n = 10+1
= 11
ਸਾਲਾਂ ਦੀ ਸਥਿਤੀ
1995, 1996, 1997, …
ਇੱਥੇ a = 1995, d= 1 n = 11
∴ Tn = 1995 + (11 – 1) 1
= 1995 + 10 = 2005
ਇਸ ਲਈ 2005 ਵਿਚ ਸੂਬਾ ਰਾਵ ਦੀ ਤਨਖ਼ਾਹ ₹ 7000 ਹੋ ਜਾਵੇਗੀ ।

ਪ੍ਰਸ਼ਨ 20.
ਰਾਮਕਲੀ ਨੇ ਕਿਸੇ ਸਾਲ ਦੇ ਪਹਿਲੇ ਹਫ਼ਤੇ ₹ 5 ਦੀ ਬੱਚਤ ਕੀਤੀ ਅਤੇ ਫਿਰ ਆਪਣੀ ਹਫਤਾਵਾਰੀ ਬੱਚਤ ₹ 1.75 ਵਧਾਉਂਦੀ ਗਈ । ਜੇਕਰ ਵੇਂ ਹਫਤੇ ਵਿਚ ਉਸ ਦੀ ਹਫਤਾਵਾਰੀ ਬੱਚਤ ₹ 20.75 ਹੋਵੇ ਤਾਂ ‘n’ ਪਤਾ ਕਰੋ ।
ਹਲ:
ਪਹਿਲੇ ਹਫ਼ਤੇ ਬੱਚਤ = ₹ 5
ਹਰੇਕ ਹਫ਼ਤੇ ਦੀ ਬਚਤ ਵਿਚ ਵਾਧਾ = ₹ 1.75
∴ ਇਹ A.P. ਹੈ ਜਿਸਦੇ ਪਦ ਹਨ
T1 = 5, d = 1.75
∴ T2 = 5 + 1.75 = 6.75
T3 = 6.75 + 1.75 = 8.50
Tn = 20. 75 (ਦਿੱਤਾ ਹੈ)
5 + (n -1) 1.75 = 20.75
[∵ Tn = a + (n – 1) d]
(n – 1) 1.75 = 20.75 – 5
(n – 1) 1.75 = 15.75
(n – 1) = 1575/100  100/175
n – 1 = 9
n = 9 + 1 = 10
∴ 10ਵੇਂ ਹਫ਼ਤੇ ਰਾਮਕਲੀ ਦੀ ਬੱਚਤ 20.75 ਹੋ ਜਾਵੇਗੀ ।

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *