PSEB Solutions for Class 10 Maths Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Exercise 5.3
PSEB Solutions for Class 10 Maths Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Exercise 5.3
PSEB 10th Class Maths Solutions Chapter 5 ਅੰਕਗਣਿਤਕ ਲੜੀਆਂ Ex 5.3
1. ਹੇਠ ਦਿੱਤੀਆਂ ਅੰਕ ਗਣਿਤਕ ਲੜੀਆਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (i).
2, 7, 12, … 10 ਪਦਾਂ ਤੱਕ
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ : 2, 7, 12, …
ਇੱਥੇ = 2, d = 7 – 2 = 5, n = 10
ਸੂਤਰ Sn = n/2[2a + (n – 1) d] ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ
∴ S10 = 10/2[2 × 2 + (10 – 1) 5]
= 5 [4 + 45] = 95
ਪ੍ਰਸ਼ਨ (ii).
– 37, – 33, – 29… 12 ਪਦਾਂ ਤੱਕ
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ : 37, – 33, – 29…
ਇੱਥੇ a = – 37, d = – 33 + 37 = 4, n = 12
ਸੂਤਰ Sn = n/2[2a + (n – 1) d] ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ
∴ S12 = 12/2[2(-37) + (12 – 1) 4]
= 6 [-74 + 44]
= – 180
ਪ੍ਰਸ਼ਨ (iii).
0.6, 1.7, 2.8, … 100 ਪਦਾਂ ਤੱਕ
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ 0.6, 1.7, 2.8,….
ਇੱਥੇ a = 0.6, d = 1.7 – 0.6 = 1.1
n = 100
ਇੱਥੇ Sn = n/2[2a + (n – 1) ] ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ
∴ S100 = 100/2[2(0.6) + (100 – 1) 1.1]
= 50 [1.2 + 108.9]
= 5505
2. ਹੇਠ ਦਿੱਤਿਆਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ :
ਪ੍ਰਸ਼ਨ (iii).
– 5 +(-8) + (-11) + ….. + (-230)
ਉੱਤਰ:
ਦਿੱਤੀ ਹੋਈ A.P. ਹੈ
– 5 + (-8) + (-11) + … +(- 230)
a = -5, d = – 8 + 5 = – 3
l = Tn = – 230
a + (n – 1) d = – 230
-5 + (n – 1) (-3) = – 230
– 3 (n – 1) = – 230 + 5 = – 225
n – 1 = 225/3 = 75
n = 75 + 1 = 76
S76 = 76/2[-5 + (-230)] |∵ Sn = n/2[a + l]
= 38 (-235)
= – 8930
3. ਇੱਕ AP ਵਿੱਚ
ਪ੍ਰਸ਼ਨ (i).
a = 5, d = 3 ਅਤੇ an = 50 ਦਿੱਤਾ ਹੈ । n ਅਤੇ Sn ਪਤਾ ਕਰੋ
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ : a = 5, d = 3, an = 50
∵ an = 50
a + (n – 1) d = 50
5 + (n – 1) 3 = 50
3(n – 1) = 50 – 5 = 45
n – 1 = 45/3 = 15
n = 15 + 1 = 16
ਹੁਣ Sn = n/2[a + l]
= 16/2[5 + 50] = 8 × 55
= 440
ਪ੍ਰਸ਼ਨ (v).
d = 5 ਅਤੇ S9 = 75, ਦਿੱਤਾ ਹੈ । a ਅਤੇ a9 ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ : d = 5, S9 = 75
∵ S9 = 75
9/2[2a + (9 – 1) 5) = 75
|∵ Sn = n/2[2a + (n – 1)d]
ਪ੍ਰਸ਼ਨ (vi).
a = 2, d = 8 ਅਤੇ Sn = 90 ਦਿੱਤਾ ਹੈ । n ਅਤੇ an ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ : a = 2, d = 8, Sn = 90,
∵ Sn = 90
n/2[2a + (n – 1) d] = 90
n/2[2 × 2 + (n – 1) 8] = 90
n[2 + 4n -4] = 90
n(4n – 2) = 90
4n2 – 2n – 90 = 0
2n2 – n – 45 = 0
2n2 – 10n + 9n – 45 = 0
|S = – 2
|P = -45 × 2 = – 90
2n [n – 5] + 9 (n – 5) = 0
(2n + 9) (n – 5) = 0
2n + 9 = 0 or n – 5= 0
n = −9/2 or n = – 5
∵ n ਰਿਣਾਤਮਕ ਨਹੀਂ ਹੋ ਸਕਦਾ n = −9/2 ਛਡ ਦਿੰਦੇ ਹਾਂ ।
∴ n = 5
ਹੁਣ an = a5 = a + (5 – 1) d
= 2 + (5 – 1)8
= 2 + 32 = 34
ਪ੍ਰਸ਼ਨ (viii).
an = 4, d = 2 ਅਤੇ Sn = – 14 ਦਿੱਤਾ ਹੈ । n ਅਤੇ a ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ : an =4, d = 2, Sn = – 14
∵ an = 4
a + (n – 1) d = 4
a + (n – 1)2 = 4
a + 2n – 2 = 4
a = 6 – 2n …(1)
Sn = – 14
n/2[a + an] = -14
n/2[6 – 2n + 4] = -14 ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ
n/2[10 – 2n] = – 14
5n – n2 + 14 = 0
n2 – 5n – 14 = 0 |S = – 5
n2 – 7n + 2n – 14 = 0 | P = 1 × – 14 = 14
n2 – 7n + 2n – 14 = 0
n (n – 7) + 2 (n – 7) = 0
(n – 7) (n + 2) = 0
n = 7 ਜਾਂ n =-2
∵ n ਹਿਣਾਤਮਕ ਨਹੀਂ ਹੋ ਸਕਦਾ
∴ n = -2 ਨੂੰ ਛੱਡ ਦਿੰਦੇ ਹਾਂ ।
∴ n = 7
n ਦਾ ਮੁੱਲ (1) ਵਿੱਚ ਰੱਖਣ ‘ਤੇ
a = 6 – 2 × 7
= 6 – 14 = – 8
ਪ੍ਰਸ਼ਨ (ix).
a = 3, n = 8 ਅਤੇ S = 192 ਦਿੱਤਾ ਹੈ ।d ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ : a = 3, n = 8, S = 192
∵ S = 192
⇒ S8 = 192 [∵ n = 8]
8/2 [2 × 3 + (8 – 1) d]=192
|∵ Sn = n/2[2a + (n – 1) d]
4 [6 + 7d] = 192
6 + 7d = 192/4 =48
7d = 48 – 6 = 42
d = 42/7 = 6
ਪ੍ਰਸ਼ਨ (x).
l = 28, S = 144 ਅਤੇ ਕੁੱਲ 9 ਪਦ ਹਨ a ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ : l= 28, S = 144
ਹੁਣ ਕੁੱਲ ਪਦ 9 ਹਨ ।
∴ n = 9 ; l = a9 = 28 ; S9 = 144
∵ a9 = 28
a + (9 – 1)d = 28
|∵ an = Tn = 9 + (n – 1)d
a + 8d = 28 …(1)
S9 = 144
9/2[a + 28] = 144 (∵ Sn = n/2(a + 1))
a + 28 = 144×2/9 = 32
a = 32 – 28 = 4.
ਪ੍ਰਸ਼ਨ 4.
636 ਜੋੜ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ A.P.: 9, 17, 25 … ਦੇ ਕਿੰਨੇ ਪਦ ਲੈਣੇ ਚਾਹੀਦੇ ਹਨ ?
ਪ੍ਰਸ਼ਨ 5.
ਕਿਸੇ AP. ਦਾ ਪਹਿਲਾ ਪਦ 5, ਅੰਤਿਮ ਪਦ 45 ਅਤੇ ਜੋੜਫਲ 400 ਹਨ । ਪਦਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਪਤਾ ਕਰੋ ।
ਪ੍ਰਸ਼ਨ 6.
ਕਿਸੇ A.P. ਦਾ ਪਹਿਲਾ ਅਤੇ ਅੰਤਿਮ ਪਦ ਕੁਮਵਾਰ 17 ਅਤੇ 350 ਹਨ । ਜੇਕਰ ਸਾਂਝਾ ਅੰਤਰ 9 ਹੋਵੇ ਤਾਂ ਇਸ ਵਿੱਚ ਕਿੰਨੇ ਪਦ ਹੋਣਗੇ ਅਤੇ ਇਨ੍ਹਾਂ ਦਾ ਜੋੜਫਲ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
ਹੱਲ:
ਦਿੱਤਾ ਹੈ : a = T1 = 17
l = an = 350, d = 9
∵ l = an = 350
a + (n -1) d = 350
17 + (n – 1) 9 = 350
9 (n – 1) = 350 – 17 = 333
n – 1 = 333/9 = 37
n = 37 + 1 = 38
ਹੁਣ S38 = n/2[a + l]
= 38/2[17 + 350]
= 19 × 367 = 6973
∵ ਦਿੱਤੀ ਹੋਈ A.P. ਦੇ 38 ਪਦਾਂ ਦਾ ਜੋੜ 6973 ਹੈ ।
ਪ੍ਰਸ਼ਨ 7.
ਉਸ A.P. ਦੇ ਪਹਿਲੇ 22 ਪਦਾਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ, ਜਿਸ ਵਿਚ d = 7 ਹੈ ਅਤੇ 22ਵਾਂ ਪਦ 149 ਹੈ ।
ਹੱਲ:
ਦਿੱਤਾ ਹੈ : d = 7; T22 = 149
n = 22
∵ T22 = 149
a + (n – 1) d = 149
a + (22 – 1) 7 = 149
a + 147 = 149
a = 149 – 147 = 2
ਹੁਣ S22 = n/2[a + T22]
= 22/2[2 + 149]
= 11 × 151 = 1661
∴ ਦਿੱਤੀ ਹੋਈ A.P. ਦੇ ਪਹਿਲੇ 22 ਪਦਾਂ ਦਾ ਜੋੜਫਲ 1661 ਹੈ ।
ਪ੍ਰਸ਼ਨ 8.
ਉਸ A.P. ਦੇ ਪਹਿਲੇ 51 ਪਦਾਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ, ਜਿਸਦੇ ਦੁਸਰੇ ਅਤੇ ਤੀਸਰੇ ਪਦ ਕੁਮਵਾਰ 14 ਅਤੇ 18 ਹਨ ।
ਹੱਲ:
ਮੰਨ ਲਉ ‘a’ ਅਤੇ ‘d’ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
ਦਿੱਤਾ ਗਿਆ ਹੈ ਕਿ T2 = 14; T3 = 18
n = 51
∵ T2 = 14
a + (n – 1) d = 14
a + (2 – 1) d = 14
a + d = 14
a = 14 – d …(1)
T3 = 18
a + (n – 1) d = 18
a + (3 – 1) d = 18
a + 2d = 18
14 – d + 2d = 18
d = 18 – 14 = 4
d = 4
d ਦਾ ਮੁੱਲ (1) ਵਿਚ ਰੱਖਣ ‘ਤੇ
a = 14 – 4 = 10
ਹੁਣ S51 = n/2[24 + (n – 1) d]
= 51/2[2 × 10 + (51 – 1) 4]
= 51/2[20 + 200]
= 51/2 × 220 = 51 × 110 = 5610
∴ ਦਿੱਤੀ ਹੋਈ A.P. ਦੇ ਪਹਿਲੇ 51 ਪਦਾਂ ਦਾ ਜੋੜ 5610 ਹੈ ।
ਪ੍ਰਸ਼ਨ 9.
ਜੇਕਰ ਕਿਸੇ A.P. ਦੇ ਪਹਿਲੇ 7 ਪਦਾਂ ਦਾ ਜੋੜਫਲ 49 ਹੈ ਅਤੇ ਪਹਿਲੇ 17 ਪਦਾਂ ਦਾ ਜੋੜ 289 ਹੈ ; ਤਾਂ ਇਸਦੇ ਪਹਿਲੇ ॥ ਪਦਾਂ ਦਾ ਜੋੜ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੰਨ ਲਉ a’ ਅਤੇ ‘d’ ਦਿੱਤੀ ਗਈ A.P. ਦਾ ਪਹਿਲਾ ਪਦ ਅਤੇ ਸਾਂਝਾ ਅੰਤਰ ਹੈ ।
ਪਹਿਲੀ ਸ਼ਰਤ ਅਨੁਸਾਰ
10. ਦਿਖਾਉ ਕਿ a1, a2, …an… ਤੋਂ ਇੱਕ A.P. ਬਣਦੀ ਹੈ, ਜੇਕਰ an ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਪ੍ਰਭਾਸ਼ਿਤ ਹੋਵੇ ।
ਪ੍ਰਸ਼ਨ (i).
an = 3 + 4n
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ ਕਿ an = 3 + 4n …(1)
‘n’ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਮੁੱਲ (1), ਵਿਚ ਰੱਖਣ ‘ਤੇ
a1 = 3 + 4 (1) = 7
a2 = 3 + 4 (2) = 11
a3 = 3 + 4 (3) = 15,
ਹੁਣ a2 – a1, a3 – a2 = 15 – 11 = 4
∵ a2 – a1 = 11 – 7 = 4
a3 – a2 = 4 = d (ਮੰਨ ਲਉ)
∴ ਇਹ ਇੱਕ A.P. ਹੈ ।
ਇੱਥੇ a = 7, d = 4 ਅਤੇ n = 15
∴ S15 = n/2[2a + (n – 1)d]
= 15/2[2(7) + (15 – 1)4]
= 15/2[14 + 56] = 15/2 × 70
= 15 × 35 = 525
ਪ੍ਰਸ਼ਨ (ii).
an = 9 – 5n ਨਾਲ ਹੀ, ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ ਪਹਿਲੇ 15 ਪਦਾਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ ।
ਉੱਤਰ:
ਦਿੱਤਾ ਹੈ ਕਿ an = 9 – 5n …(1)
n ਦੇ ਭਿੰਨ-ਭਿੰਨ ਮੁੱਲ (1) ਵਿੱਚ ਭਰਨ ‘ਤੇ
a1 = 9 – 5 (1) = 4
a2 =2 9 – 5(2) = -1
a3 = 9 – 5 (3) = – 6
ਹੁਣ a2 – a1 = -1 – 4 = – 5
ਇੱਥੇ a3 – a2 = – 6 + 1 = – 5
∴ a2 – a1 = a3 – a2 = -5 = d (ਮੰਨ ਲਉ)
∴ ਇਹ ਇਕ A.P. ਹੈ ।
ਇੱਥੇ a = 4, d = -5, n = 15
∴ S15 = n/2[2a + (n – 1)a]
= 15/2[2(4) + (15 – 1) (-5)]
= 15/2[8 – 70] = 15/2(-62)
= – 465
ਪ੍ਰਸ਼ਨ 11.
ਜੇਕਰ ਕਿਸੇ A.P. ਦੇ ਪਹਿਲੇ n ਪਦਾਂ ਦਾ ਜੋੜਫਲ 4n + n2 ਹੋਵੇ ਤਾਂ ਇਸ ਦਾ ਪਹਿਲਾ ਪਦ (ਭਾਵ S1) ਕੀ ਹੈ ? ਪਹਿਲੇ ਦੋ ਪਦਾਂ ਦਾ ਜੋੜਫਲ ਕੀ ਹੈ ? ਦੂਜਾ ਪਦ ਕੀ ਹੈ ? ਇਸੇ ਤਰ੍ਹਾਂ ਤੀਸਰਾ, 10ਵਾਂ ਅਤੇ ਵਾਂ ਪਦ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਦਿੱਤਾ ਹੈ ਕਿ A.P. ਦੇ ‘n’ ਪਦਾਂ ਦਾ ਜੋੜਫਲ ਹੈ
Sn = 4n – n2 …(1)
n = 1 ਦਾ ਮੁੱਲ (1) ਵਿਚ ਰੱਖਣ ‘ਤੇ
S2 = 4(2) – (2)2 = 8 – 4
S2 = 4
T1 + T2 = 4
3 + T2 = 4
T2 = 4 – 3 = 1
n = 3 ਦਾ ਮੁਲ (1) ਵਿਚ ਰੱਖਣ ‘ਤੇ
S3 = 4 (3) – (3)2 = 12 – 9 = 3
ਜਾਂ S2 + T3 = 3
4 + T3 = 3
T3 = 3 – 4 = -1
ਹੁਣ d = T2 – T1
= 1 – 3 = – 2
∴ T10 = a + (n – 1) d
= 3 (10 – 1) (-2)
T10 = 3 – 18 = -15
Tn = a + (n – 1) d
= 3 + (n – 1) (-2)
= 3 – 2n + 2
Tn = 5 – 2n
ਪ੍ਰਸ਼ਨ 12.
ਅਜਿਹੀਆਂ ਪਹਿਲੀਆਂ 40 ਧਨ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ ਜੋ 6 ਨਾਲ ਭਾਜਯੋਗ ਹਨ ।
ਹੱਲ:
6 ਨਾਲ ਭਾਜਯੋਗ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ
6, 12, 18, 24, 30, 36 42, …
ਇੱਥੇ a = T1 = 6, T2 = 12,
T3 = 18, T4 = 24
T2 – T1 = 12 – 6 = 6
T3 – T2 = 18 – 12 = 6
T4 – T3 = 24 – 18 = 6
∵ T2 – T1 = T3 – T2
= T4 – T3 = 6 = d (ਮੰਨ ਲਉ)
ਸੂਤਰ Sn = n/2[24 + (n – 1) d]
S40 = 40/2[2(6) + (40 – 1) 6]
= 20 [12 + 234]
= 20 (246) = 4920
∴ 6 ਨਾਲ ਭਾਜਯੋਗ 40 ਧਨ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜਫਲ 4920 ਹੈ ।
ਪ੍ਰਸ਼ਨ 13.
8 ਦੇ ਪਹਿਲੇ 15 ਗੁਜਾਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
8 ਦੇ ਗੁਣ ਹਨ : 8, 16, 24, 32, 40, 48, …
ਇੱਥੇ a = T1 = 8; T2 = 16 ;
T3 = 24 ; T4 = 32
T2 – T1 = 16 – 8 = 8
T3 – T2 = 24 – 16 = 8
∵ T2 – T1 = T3 – T2 = 8 = d (ਮੰਨ ਲਉ।)
ਸੂਤਰ Sn = n/2[2a + (n – 1)d]
S15 = 15/2[2(8) + (15 – 1)8]
= 15/2[16 + 112]
= 15/2 × 128 = 960
∴ 8 ਦੇ ਪਹਿਲੇ 15 ਗੁਣਕਾਂ ਦਾ ਜੋੜਫਲ 960 ਹੈ ।
ਪ੍ਰਸ਼ਨ 14.
0 ਅਤੇ 50 ਦੇ ਵਿਚ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
0 ਅਤੇ 50 ਦੇ ਵਿਚਕਾਰ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਹਨ 1, 3, 5, 7, 9, …, 49
ਇੱਥੇ a = T1 = 1; T2 = 3
T3 = 5 ; T4 = 7
l = Tn = 49
T2 – T1 = 3 – 1 = 2
T3 – T2 = 5 – 3 = 2
∵ T2 – T1 = T3 – T2 = 1 d (ਮੰਨ ਲਉ)
l = Tn = 49
a + (n – 1)d = 49
1 + (n – 1) 2 = 49
2(n – 1) = 49 – 1 = 48
n – 1 = 48/2 = 24
n = 24 + 1 = 25
ਸੂਤਰ Sn = n/2[2a + (n – 1)d]
S25 = 25/2[2(1) + (25 – 1) 2]
= 25/2[2 + 48]
= 25/2 × 50 = 625
∴ 0 ਅਤੇ 50 ਦੇ ਵਿਚਕਾਰ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜਫਲ 625 ਹੈ ।
ਪ੍ਰਸ਼ਨ 15.
ਨਿਰਮਾਣ ਕਾਰਜ ਨਾਲ ਸੰਬੰਧਤ ਕਿਸੇ ਠੇਕੇ ਵਿੱਚ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਮਿਤੀ ਤੋਂ ਬਾਅਦ ਕੰਮ ਦੇਰੀ ਨਾਲ ਪੂਰਾ ਕਰਨ ਲਈ, ਜ਼ੁਰਮਾਨਾ ਲਗਾਉਣ ਦੀ ਵਿਵਸਥਾ ਇਸ ਪ੍ਰਕਾਰ ਹੈ :
ਪਹਿਲੇ ਦਿਨ ਦੇ ਲਈ ₹ 200, ਦੂਸਰੇ ਦਿਨ ਲਈ ₹ 250, ਤੀਸਰੇ ਦਿਨ ਲਈ ₹ 300 ਆਦਿ ਭਾਵ ਹਰੇਕ ਅਗਲੇ ਦਿਨ ਦਾ ਜ਼ੁਰਮਾਨਾ ਆਪਣੇ ਤੋਂ ਠੀਕ ਪਹਿਲੇ ਦਿਨ ਦੇ ਜੁਰਮਾਨੇ ਨਾਲੋਂ ₹ 50 ਵੱਧ ਹੈ । ਇੱਕ ਠੇਕੇਦਾਰ ਨੂੰ ਜੁਰਮਾਨੇ ਦੇ ਰੂਪ ਵਿਚ ਕਿੰਨੀ ਰਕਮ ਦੇਣੀ ਪਵੇਗੀ, ਜੇਕਰ ਉਹ ਇਸ ਕੰਮ ਵਿੱਚ 30 ਦਿਨ ਦੀ ਦੇਰੀ ਕਰ ਦਿੰਦਾ ਹੈ ।
ਹੱਲ:
ਪਹਿਲੇ, ਦੁਸਰੇ ਅਤੇ ਤੀਸਰੇ ਦਿਨ ਲਈ ਜ਼ੁਰਮਾਨਾਂ ਹੈ : ₹ 200, ₹ 250, ₹ 300
ਜ਼ੁਰਮਾਨੇ ਵਿਚ ਅੰਤਰ ₹ 50 ਨਾਲ ਵੱਧਦਾ ਹੈ ।
∴ ਇਹ A.P. ਹੈ ।
₹ 200, ₹ 250, ₹ 300, ₹ 350
ਇੱਥੇ a = T1 = 200 ; d = 50 ਅਤੇ n = 30
30 ਦਿਨਾਂ ਬਾਅਦ ਦੇਣਯੋਗ ਰਾਸ਼ੀ
S30 = n/2[2a + (n – 1l) d]
= 30/2[2(200) + (30 -1) 50]
= 15 [400 + 1450]
= 15 (1850) = 27750
∴ ਠੇਕੇਦਾਰ ਨੂੰ ਇਹ ਰਾਸ਼ੀ ₹ 27,750 ਜ਼ੁਰਮਾਨੇ ਦੇ ਰੂਪ ਵਿਚ ਦੇਣੀ ਪਵੇਗੀ ।
ਪ੍ਰਸ਼ਨ 16.
ਕਿਸੇ ਸਕੂਲ ਦੇ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਸਮੁੱਚੇ ਪ੍ਰਦਰਸ਼ਨ ਲਈ 7 ਨਕਦ ਇਨਾਮ ਦੇਣ ਲਈ ₹ 700 ਦੀ ਰਾਸ਼ੀ ਰੱਖੀ ਗਈ ਹੈ । ਜੇਕਰ ਹਰੇਕ ਇਨਾਮ ਆਪਣੇ ਤੋਂ ਠੀਕ ਪਹਿਲੇ ਇਨਾਮ ਤੋਂ ₹ 20 ਘੱਟ ਹੋਵੇ ਤਾਂ ਹਰੇਕ ਇਨਾਮ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਮੰਨ ਲਉ ਪਹਿਲੇ ਵਿਦਿਆਰਥੀ ਨੂੰ ਦਿੱਤੀ ਗਈ ਇਨਾਮੀ ਦੀ ਰਾਸ਼ੀ = ₹ x
ਦੂਸਰੇ ਵਿਦਿਆਰਥੀ ਨੂੰ ਦਿੱਤੀ ਗਈ ਰਾਸ਼ੀ = ₹ (x – 20)
ਤੀਸਰੇ ਵਿਦਿਆਰਥੀ ਦੀ ਰਾਸ਼ੀ
= ₹ [x – 20 – 20}
= ₹ (-40)
∴ ਲੋੜੀਂਦਾ ਹੈ ।
₹ x, ₹ (x – 20), ₹ (x – 40)
∴ ਇਹ A.P. ਹੈ ।
a = ₹ x, d = – ₹ 20 n = 7
Sn = n/2[2a + (n – 1)d]
S7 = 7/2[2(x) + (7 – 1) (-20)
S7 = 7/2[2x – 120] = 7 (x – 60)
7 (x – 60) = 700
x – 60 = 700/7 = 100
x = 100 + 60.
x = 160
∴ 7 ਇਨਾਮ ਹਨ ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60, ₹ 40
ਪ੍ਰਸ਼ਨ 17.
ਇੱਕ ਸਕੂਲ ਦੇ ਵਿਦਿਆਰਥੀਆਂ ਨੇ ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ ਘਟਾਉਣ ਲਈ ਸਕੂਲ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਪੌਦੇ ਲਗਾਉਣ ਬਾਰੇ ਸੋਚਿਆ । ਇਹ ਫੈਸਲਾ ਲਿਆ ਗਿਆ ਕਿ ਹਰੇਕ ਸ਼੍ਰੇਣੀ ਦਾ ਹਰੇਕ ਸੈਕਸ਼ਨ ਆਪਣੀ ਸ਼੍ਰੇਣੀ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਪੌਦੇ ਲਗਾਵੇਗਾ । ਉਦਾਹਰਣ ਦੇ ਲਈ ਪਹਿਲੀ ਸ਼੍ਰੇਣੀ ਦਾ ਇੱਕ ਸੈਕਸ਼ਨ 1 ਪੌਦਾ ਲਗਾਵੇਗਾ, ਸ਼੍ਰੇਣੀ II ਦਾ ਇੱਕ ਸੈਕਸ਼ਨ 2 ਪੌਦੇ ਲਗਾਵੇਗਾ, ਸ਼੍ਰੇਣੀ I ਦਾ ਇੱਕ ਸੈਕਸ਼ਨ 3 ਪੌਦੇ ਲਗਾਵੇਗਾ, ਆਦਿ, ਅਤੇ ਅਜਿਹਾ ਸ਼੍ਰੇਣੀ XII ਤੱਕ ਚਲਦਾ ਰਹੇਗਾ | ਹਰੇਕ ਸ਼੍ਰੇਣੀ ਦੇ 3 ਸੈਕਸ਼ਨ ਹਨ । ਇਸ ਸਕੂਲ ਦੇ ਵਿਦਿਆਰਥੀਆਂ ਦੁਆਰਾ ਲਗਾਏ ਗਏ ਪੌਦਿਆਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਕਿੰਨੀ ਹੋਵੇਗੀ ?
ਹੱਲ:
ਸ਼੍ਰੇਣੀ I ਦੇ ਤਿੰਨ ਸੈਕਸ਼ਨਾਂ ਦੁਆਰਾ ਲਗਾਏ ਗਏ ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ = 3 × 1 = 3
ਸ਼੍ਰੇਣੀ II ਦੇ ਤਿੰਨ ਸੈਕਸ਼ਨਾਂ ਦੁਆਰਾ ਲਗਾਏ ਗਏ ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ = 3 × 2 = 6
ਸ਼੍ਰੇਣੀ III ਦੇ ਤਿੰਨ ਸੈਕਸ਼ਨਾਂ ਦੁਆਰਾ ਲਗਾਏ ਗਏ ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ = 3 × 3 = 9
……………………………………………..
……………………………………………..
……………………………………………..
ਸ਼੍ਰੇਣੀ XII ਦੇ ਤਿੰਨ ਸੈਕਸ਼ਨਾਂ ਦੁਆਰਾ ਲਗਾਏ ਗਏ ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ = 3 × 12 = 36
∴ ਲੌੜੀਂਦਾ A.P. ਹੈ 3, 6, 9,…, 36
ਇੱਥੇ a = T1 = 3 ; T2 = 6; T3 = 9
l = Tn = 36 ; n = 12
d = T2 – T1 = 6 – 3 = 3
ਵਿਦਿਆਰਥੀਆਂ ਦੁਆਰਾ ਲਗਾਏ ਗਏ ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ
= S12
= n/2[a + l]
= 12/2[3 + 36] = 6 × 39 = 234
∴ ਵਾਯੂ ਪ੍ਰਦੂਸ਼ਣ ਰੋਕਣ ਲਈ ਲਗਾਏ ਗਏ ਪੋਦਿਆਂ ਦੀ ਸੰਖਿਆਂ 234 ਹੈ ।
ਪ੍ਰਸ਼ਨ 18.
ਕੇਂਦਰ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ, ਵਾਰੀ-ਵਾਰੀ ਨਾਲ | A ਅਤੇ B ਨੂੰ ਕੇਂਦਰ ਮੰਨਦੇ ਹੋਏ ਅਰਧ ਵਿਆਸ 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, …..ਵਾਲੇ ਲਗਾਤਾਰ ਅਰਧ ਚੱਕਰਾਂ ਨੂੰ ਖਿੱਚ ਕੇ ਇਕ ਕੁੰਡਲਦਾਰ (Spiral) ਬਣਾਇਆ | ਗਿਆ ਹੈ, ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ ਵਿਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ । ਤੇਰਾਂ ਲਗਾਤਾਰ ਅਰਧ ਚੱਕਰਾਂ ਤੇ ਬਣੇ ਇਸ ਕੁੰਡਲਦਾਰ (Spiral) ਦੀ ਕੁੱਲ ਲੰਬਾਈ ਕੀ ਹੈ ? (π = 22/7 ਲਉ)
[ਸੰਕੇਤ : ਕ੍ਰਮਵਾਰ ਕੇਂਦਰ A, B, A, B… ਵਾਲੇ ਅਰਧ ( ਚੱਕਰਾਂ ਦੀਆਂ ਲੰਬਾਈਆਂ l1, l2, l3, l4 ਹਨ ]
ਪ੍ਰਸ਼ਨ 19.
200 ਮੋਟੀਆਂ ਲੱਕੜਾਂ (Logs) ਦੀ ਢੇਰੀ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਸਭ ਤੋਂ ਹੇਠ ਵਾਲੀ ਕਤਾਰ ਵਿਚ 20 ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਉਸ ਤੋਂ ਅਗਲੀ ਕਤਾਰ ਵਿਚ 19 ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਉਸ ਤੋਂ ਅਗਲੀ ਕਤਾਰ ਵਿਚ 18 ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਆਦਿ (ਦੇਖੋ ਚਿਤਰ)। ਇਹ 200 ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਕਿੰਨੀਆਂ ਕਤਾਰਾਂ ਵਿੱਚ ਰੱਖੀਆਂ ਗਈਆਂ ਹਨ ਅਤੇ ਸਭ ਤੋਂ ਉਪਰਲੀ ਕਤਾਰ ਵਿੱਚ ਕਿੰਨੀਆਂ ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਹਨ ?
ਹੱਲ:
ਸਭ ਤੋਂ ਹੇਠਲੀ ਕਤਾਰ ਵਿਚ ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਦੀ ਸੰਖਿਆ = 20
ਦੂਸਰੀ ਕਤਾਰ ਵਿਚ ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਦੀ ਸੰਖਿਆਂ = 19
ਤੀਸਰੀ ਕਤਾਰ ਵਿਚ ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਦੀ ਸੰਖਿਆਂ = 18
ਇਸ ਤਰ੍ਹਾਂ ਅੱਗੇ ਵੀ ਹੈ
∴ ਹਰੇਕ ਕਤਾਰ ਵਿਚ ਰੱਖੀਆਂ ਗਈਆਂ ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਦੀ ਸੰਖਿਆਂ ਇਕ A.P. ਬਣਾਂਦੀ ਹੈ ।
ਇੱਥੇ a = T1 = 20 ;
T2 = 19 ; T3 = 18…
d = T2 – T1
= 19 – 20 = -1
ਮੰਨ ਲਓ Sn ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਦੀ ਕੁਲ ਸਿੱਖਿਆ ਦੱਸਦੀ ਹੈ ।
∴ Sn = n/2[2a + (n – 1)d]
= n/2[2(20) + (n – 1) (-1)]
= n/2[40 – n + 1]
ਪ੍ਰਸ਼ਨ ਅਨੁਸਾਰ
n/2[41 – n] = 200
41n – n2 = 400
-n2 + 41n – 400 = 0 | S = – 41
n2 – 41n + 400 = 0 |P = 400
n2 – 16n – 25n + 400 = 0
n (n – 16) – 25 (n – 16) = 0
(n – 16) (n – 25) = 0
n – 16 = 0 ਜਾਂ n – 25 = 0
n = 16, 25
ਸਥਿਤੀ I. ਜਦੋਂ n = 25
T25 = a + (n – 1) d
= 20 + (25 – 1) (-1)
= 20 – 24 = -4 ਜੋ ਅਸੰਭਵ ਹੈ।
∴ n = 25 ਛਡ ਦਿੰਦੇ ਹਨ ।
ਸਥਿਤੀ II. ਜਦੋਂ n = 16
T16 = a + (n – 1) d
= 20 + (16 – 1) (-1)
= 20 – 15 = 5
∴ ਕੁੱਲ 16 ਕਤਾਰਾਂ ਹਨ ਅਤੇ ਉਪਰਲੀ ਕਤਾਰ ਵਿਚ 5 ਮੋਟੀਆਂ ਲੱਕੜਾਂ ਹਨ ।
ਪ੍ਰਸ਼ਨ 20.
ਇੱਕ ਆਲੂ ਦੌੜ (potato race) ਵਿਚ ਆਰੰਭਿਕ ਸਥਾਨ ‘ਤੇ ਇੱਕ ਬਾਲਟੀ ਰੱਖੀ ਹੋਈ ਹੈ । ਜੋ ਪਹਿਲੇ ਆਲੂ ਤੋਂ 5 ਮੀਟਰ ਦੂਰ ਹੈ ਅਤੇ ਬਾਕੀ ਆਲੂਆਂ ਨੂੰ ਸਰਲ ਰੇਖਾ ਵਿਚ 3 m ਦੀ ਆਪਸੀ ਦੂਰੀ ਤੇ ਰੱਖਿਆ ਗਿਆ ਹੈ । ਇਸ ਰੇਖਾ ਉੱਤੇ 10 ਆਲੂ ਰੱਖੇ ਗਏ ਹਨ (ਦੇਖੋ ਚਿੱਤਰ)
ਹਰੇਕ ਪ੍ਰਤਿਯੋਗੀ ਬਾਲਟੀ ਤੋਂ ਚਲਣਾ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ, ਨਜਦੀਕ ਤੋਂ ਨਜਦੀਕ ਵਾਲੇ ਆਲੂ ਨੂੰ ਚੁੱਕਦੀ ਹੈ, ਉਸਨੂੰ ਲੈਕੇ ਵਾਪਿਸ ਆ ਕੇ (ਦੌੜ ਕੇ) ਬਾਲਟੀ ਵਿੱਚ ਪਾ ਦਿੰਦੀ ਹੈ, ਦੂਸਰਾ ਆਲੂ ਚੁੱਕਣ ਲਈ ਵਾਪਸ ਦੌੜਦੀ ਹੈ, ਉਸ ਨੂੰ ਚੁੱਕ ਕੇ ਵਾਪਿਸ ਬਾਲਟੀ ਵਿਚ ਪਾ ਦਿੰਦੀ ਹੈ, ਅਤੇ ਉਹ ਅਜਿਹਾ ਉਦੋਂ ਤੱਕ ਕਰਦੀ ਹੈ ਜਦੋਂ ਤੱਕ ਸਾਰੇ ਆਲੂ ਬਾਲਟੀ ਵਿੱਚ ਨਾ ਆ ਜਾਣ । ਇਸ ਵਿੱਚ ਪ੍ਰਤੀਯੋਗੀ ਨੂੰ ਕੁੱਲ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰਨੀ ਪਵੇਗੀ ?
[ਸੰਕੇਤ : ਪਹਿਲੇ ਅਤੇ ਦੂਜੇ ਆਲੂਆਂ ਨੂੰ ਚੁੱਕ ਕੇ ਬਾਲਟੀ ਵਿਚ ਪਾਉਣ ਲਈ ਦੌੜੀ ਗਈ ਦੂਰੀ = 2 × 5 + 2 × (5 + 3) ਹੈ ।]
ਹੱਲ:
ਪਹਿਲਾ ਆਲੂ ਚੁੱਕਣ ਲਈ ਤੈਅ ਕੀਤੀ ਦੂਰੀ = 2(5) ਮੀ. = 10 ਮੀ.
ਪਹਿਲੇ ਆਲੂਆਂ ਵਿਚ ਦੁਰੀ = 3 ਮੀ.
∴ ਦੂਜੇ ਆਲੂ ਲਈ ਤੈਅ ਕੀਤੀ ਦੂਰੀ
= 2 (5 +3) ਸਮ = 16 ਮੀ.
ਤੀਸਰਾ ਆਲੂ ਚੁੱਕਣ ਲਈ ਤੈਅ ਕੀਤੀ ਦੂਰੀ
= 2 (5 + 3 + 3) ਮੀ.
= 22 ਮੀ.
ਇਹ ਪ੍ਰਕਿਰਿਆ ਚਲਦੀ ਰਹੇਗੀ
∴ ਇਹ A.P. ਬਣ ਜਾਏਗੀ ।
10 ਮੀ., 16 ਮੀ., 22 ਮੀ., 28 ਮੀ., ……
a = T1 = 10; T2 = 16; T3 = 22, …
d = T2 – T1 = 16 – 10 = 6
n = 10
∴ ਕੁਲ ਜਿੰਨੀ ਦੌੜ ਲਗਾਉਣੀ ਪਵੇਗੀ = S10
= n/2[2a + (n – 1) d]
= 10/2[2(10) + (10 – 1) 6]
=5 [20 + 54]
= 5 × 74 = 370
∴ ਪ੍ਰਤੀਯੋਗੀ ਨੂੰ ਕੁਲ 370 ਮੀ. ਦੀ ਦੁਰੀ ਦੌੜ ਕੇ ਤੈਅ ਕਰਨੀ ਹੈ ।