PSEB Solutions for Class 10 Maths Chapter 6 ਤ੍ਰਿਭੁਜ Exercise 6.4
PSEB Solutions for Class 10 Maths Chapter 6 ਤ੍ਰਿਭੁਜ Exercise 6.4
PSEB 10th Class Maths Solutions Chapter 6 ਤ੍ਰਿਭੁਜ Ex 6.4
ਪ੍ਰਸ਼ਨ 1.
ਮੰਨ ਲਉ △ABC ~ △DEF ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਖੇਤਰਫਲ ਕੁਮਵਾਰ 64 cm2 ਅਤੇ 121 cm2 ਜੇਕਰ EF = 15.4 cm ਹੋਵੇ ਤਾਂ BC ਪਤਾ ਕਰੋ ।
ਹੱਲ:
△ABC ~ △DEF, △ABC ਦਾ ਖੇਤਰਫਲ = 64 cm2 ਅਤੇ △DEF ਦਾ ਖੇਤਰਫਲ = 121 cm2 ਅਤੇ EF = 15.4 cm ਹੈ ।
ਪ੍ਰਸ਼ਨ 2.
ਇੱਕ ਸਮਲੰਬ ਚਤੁਰਭੁਜ ABCD ਜਿਸ ਵਿੱਚ AB || DC ਹੈ, ਦੇ ਵਿਕਰਣ ਆਪਸ ਵਿੱਚ ਬਿੰਦੁ 0 ਉੱਤੇ ਕੱਟਦੇ ਹਨ । ਜੇਕਰ AB = 2 CD ਹੋਵੇ ਤਾਂ ਤ੍ਰਿਭੁਜਾਂ AOB ਅਤੇ COD ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ABCD ਇਕ ਸਮਲੰਬ ਚਤੁਰਭੁਜ ਹੈ ਜਿਸ ਵਿੱਚ AB || DC ਹੈ, ਦੇ ਵਿਕਰਣ AC ਅਤੇ BD ਆਪਸ ਵਿੱਚ O ਬਿੰਦੂ ਉੱਤੇ ਕੱਟਦੇ ਹਨ ਅਤੇ AB = 2 CD ਹੈ ।
△AOB ਅਤੇ △COD ਵਿੱਚ,
∠1 = ∠2 (ਇਕਾਂਤਰ ਕੋਣ)
∠3 = ∠4 (ਇਕਾਂਤਰ ਕੋਣ)
∠5 = ∠6 (ਸਿਖ਼ਰ ਸਨਮੁੱਖ ਕੋਣ)
∴ △AOB ~ △COD
ਪ੍ਰਸ਼ਨ 3.
ਚਿੱਤਰ ਵਿੱਚ ਇੱਕੋ ਆਧਾਰ BC ਉੱਤੇ ਦੋ ਤਿਭੁਜ ABC ਅਤੇ DBC ਬਣੇ ਹੋਏ ਹਨ । ਜੇਕਰ AD, BC ਨੂੰ O’ ਤੇ ਕੱਟੇ ਤਾਂ ਦਰਸਾਉ ਕਿ
ਪ੍ਰਸ਼ਨ 4.
ਜੇਕਰ ਦੋ ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ਦੇ ਖੇਤਰਫਲ ਬਰਾਬਰ ਹੋਣ ਤਾਂ ਸਿੱਧ ਕਰੋ ਕਿ ਉਹ ਤ੍ਰਿਭੁਜ ਸਰਬੰਗਸਮ ਹੁੰਦੇ ਹਨ ।
ਹੱਲ:
ਦਿੱਤਾ ਹੈ : ਦੋ ਤਿਭੁਜਾਂ △ABC ਅਤੇ △DEF ਦੇ ਸਮਰੂਪ ਹਨ ਅਤੇ ਖੇਤਰਫਲ ਬਰਾਬਰ ਹਨ ।
ਸਿੱਧ ਕਰਨਾ : △ABC ~ △DEF
ਪ੍ਰਸ਼ਨ 5.
ਇੱਕ ਤ੍ਰਿਭੁਜ ABC ਦੀਆਂ ਭੁਜਾਵਾਂ AB, BC ਅਤੇ CA ਦੇ ਮੱਧ ਬਿੰਦੂ ਕੁਮਵਾਰ D, E ਅਤੇ F ਹਨ △DEF ਅਤੇ △ABC ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਪਤਾ ਕਰੋ ।
ਹੱਲ:
ਦਿੱਤਾ ਹੈ : ਇੱਕ △ABC ਦੀਆਂ ਭੁਜਾਵਾਂ AB, BC ਅਤੇ CA ਦੇ ਮੱਧ ਬਿੰਦੂ ਕੁਮਵਾਰ D, E ਅਤੇ F ਹਨ ।
ਸਿੱਧ ਕਰਨਾ : ਖੇਤਰਫਲ (△DEF) : ਖੇਤਰਫਲ (△ABC) ਪਤਾ ਕਰਨਾ ।
ਸਬੂਤ : △ABC ਵਿਚ,
F, AB ਦਾ ਮੱਧ ਬਿੰਦੂ ਹੈ । …(ਦਿੱਤਾ ਹੈ।)
E, AC ਦਾ ਮੱਧ ਬਿੰਦੁ ਹੈ । …(ਦਿੱਤਾ ਹੈ।)
ਇਸ ਲਈ ਮੱਧ ਬਿੰਦੂ ਪ੍ਰਮੇਯ ਤੋਂ,
FE || BC ਅਤੇ FE = 1/2BC
⇒ FE || BD
ਅਤੇ FE = BD [∵ BD = 1/2BC]
∴ BDEF ਇਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੈ ।
(∵ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਸਮਾਂਤਰ ਅਤੇ ਸਮਾਨ ਹਨ)
△FBD ਅਤੇ △DEF ਵਿੱਚ,
FB = DE
…(|| gm BDEF ਦੀਆਂ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ)
FD = FD (ਇਕੋ ਜਿਹੇ।
…(|| gm BDEF ਦੀਆਂ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ)
BD = FE
∴ △FBD ≅ △DEF
… (SSS ਸਰਬੰਗਸਮ ਪ੍ਰਯੋਗ)
ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਸਿੱਧ ਕਰ ਸਕਦੇ ਹਾਂ ।
△AFE ≅ △DEF
ਅਤੇ △EDC ≅ △DEF
ਜੇਕਰ ਤ੍ਰਿਭੁਜਾਂ ਸਰਬੰਗਸਮ ਹੋਵੇ ਤਾਂ ਖੇਤਰਫਲ ਬਰਾਬਰ ਹੁੰਦੇ ਹਨ।
∴ ar (△FBD) = ar (△DEF) …(1)
ar (△AFE) = ar (△DEF) . …(2)
ar (△EDC) = ar (△DEF) …(3)
ਹੁਣ ar △(ABC) = ar (△FBD) + ar (△DEF) + ar (△AFE) + ar (△EDC)
= ar (△DEF) + ar (△DEF) + ar (△DEF) + ar (△DEF)
[(1), (2) ਅਤੇ (3) ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ਤੇ]
= 4 ar (△DEF)
⇒ ar (△DEF) = 1/4ar (△ABC)
⇒ ar(△DEF)/ar(△ABC = 1/4
∴ ar (△DEF) : ar(△ABC) = 1 : 4.
ਪ੍ਰਸ਼ਨ 6.
ਸਿੱਧ ਕਰੋ ਕਿ ਦੋ ਸਮਰੂਪ ਤਿਭੁਜਾਂ ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਇਨ੍ਹਾਂ ਦੀਆਂ ਸੰਗਤ ਮੱਧਿਕਾਵਾਂ ਦੇ ਅਨੁਪਾਤ ਦਾ ਵਰਗ ਹੁੰਦਾ ।
ਹੱਲ:
ਦਿੱਤਾ ਹੈ : △ABC ~ △DEF.
AX ਅਤੇ DY ਮਵਾਰ ਭੁਜਾ BC ਅਤੇ EF ਮੱਧਿਕਾਵਾਂ ਹਨ ।
ਪ੍ਰਸ਼ਨ 7.
ਸਿੱਧ ਕਰੋ ਕਿ ਇਕ ਵਰਗ ਦੀ ਕਿਸੇ ਭੁਜਾ ਉੱਤੇ ਬਣਾਏ ਗਏ ਸਮਭੁਜੀ ਤ੍ਰਿਭੁਜ ਦਾ ਖੇਤਰਫਲ ਉਸੇ ਵਰਗ ਦੇ ਇੱਕ ਵਿਕਰਣ ‘ਤੇ ਬਣੇ ਸਮਭੁਜੀ ਤ੍ਰਿਭੁਜ ਦੇ ਖੇਤਰਫਲ ਦਾ ਅੱਧਾ ਹੁੰਦਾ ਹੈ ।
ਹੱਲ:
ਦਿੱਤਾ ਹੈ : ABCD ਇਕ ਵਰਗ ਹੈ।
ਸਮਭੁਜੀ △ABC ਵਰਗ ਦੀ ਭੁਜਾ AB ਉੱਤੇ ਸਥਿਤ ਹੈ ਅਤੇ ਸਮਭੁਜੀ △ACF ਵਿਕਰਣ AC ਉੱਤੇ ਬਣੀ ਹੈ ।
ਪ੍ਰਸ਼ਨ 8.
ABC ਅਤੇ BDE ਦੋ ਸਮਭੁਜੀ ਤ੍ਰਿਭੁਜਾਂ ਇਸ ਪ੍ਰਕਾਰ ਹਨ ਕਿ ॥ ਭੁਜਾ BC ਦਾ ਮੱਧ ਬਿੰਦੂ ਹੈ । ਤ੍ਰਿਭੁਜਾਂ ABC ਅਤੇ BDE ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਹੈ :
(A) 2 : 1
(B) 1 : 2
(C) 4 : 1
(D) 1 : 4.
ਪ੍ਰਸ਼ਨ 9.
ਦੋ ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ਦੀਆਂ ਭੁਜਾਵਾਂ 4 : 9 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹਨ । ਇਨ੍ਹਾਂ ਤ੍ਰਿਭੁਜਾਂ ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਹੈ :
(A) 2 : 3
(B) 4 : 9
(C) 81 : 16
(D) 16 : 81
ਹੱਲ: