TN 8 Maths

Samacheer Kalvi 8th Maths Solutions Term 2 Chapter 2 Algebra Ex 2.2

Samacheer Kalvi 8th Maths Solutions Term 2 Chapter 2 Algebra Ex 2.2

Tamilnadu Samacheer Kalvi 8th Maths Solutions Term 2 Chapter 2 Algebra Ex 2.2

Question 1.
Fill in the blanks:

Question (i)
The solution of the equation ax + b = 0 is ………
Answer:
– b/a
Solution:
ax + b = 0
ax = – b
∴ x = – b/a

Question (v)
In an equation a + b = 23. The value of a is 14 then the value of b is ……..
Answer:
b = 9
Hint:
Given equation is a + b = 23
a = 14
14 + b = 23
b = 23 – 14 = 9
b = 9

 

Question 2.
Say True or False

Question (i)
“Sum of a number and two times that number is 48” can be written as y + 2y = 48
Answer:
True
Hint:
Let the number be ‘y’
Sum of number & two times that number is 48
Can be written as y + 2y = 48 – True

Question (ii)
5(3x + 2) = 3(5x – 7) is a linear equation in one variable.
Answer:
True
Hint:
5 (3x + 2) = 3 (5x – 7) is a linear equation in one variable – ‘x’ – True

Question (iii)
x = 25 is the solution of one third of a number is less than 10 the original number.
Answer:
False
Hint:
One third of number is 10 less than original number.
Let number be ‘x’ Therefore let us frame the equation
x/3 = x – 10
∴ x = 3x – 30
3x – x = 30
2x = 30
x = 15 is the solution

Question 3.
One number is seven times another. If their difference is 18, find the numbers.
Solution:
Let the numbers be x & y
Given that one number is 7 times the other & that the difference is 18.
Let x = 7y
also, x – y = 18 (given)
Substituting for x in the above
We get 7y – y = 18
∴ 6y = 18
y = 18/6 = 3
x = 7y = 7 x 3 = 21
The number are 3 & 21

Question 4.
The sum of three consecutive odd numbers is 75. Which is the largest among them?
Solution:
Given sum of three consecutive odd numbers is 75
Odd numbers are 1, 3, 5,1,9, 11, 13,……..
∴ The difference between 2 consecutive odd numbers is always 2. or in other words, if one odd number is x, the next odd number would be x + 2 and the next number would be x + 2 + 2 = x + 4
i.e x + 4
Since sum of 3 consecutive odd nos is 75
∴ x + x + 2 + x + 4 = 75
3x + 6 = 75 ⇒ 3x = 75 – 6
3x = 69
x = 69/3 = 23
The odd numbers are 23, 23 + 2, 23 + 4
i.e 23, 25, 27
∴ Largest number is 27.

Question 6.
A total of 90 currency notes, consisting only of X5 and ?10 denominations, amount to ₹ 500. Find the number of notes in each denomination.
Solution:
Let the number of ₹ 5 notes be ‘x’
And number of ₹ 10 notes be ly ’
Total numbers of notes is x + y = 90 (given)
The total value of the notes is 500 rupees.
Value of one ₹ 5 rupee note is 5
Value of x ₹ 5 rupee notes is 5 × x = 5x
Value ofy ₹ 10 rupee notes is 10 × y = 10y
∴ The total value is 5x + 10y which is 500
we have 2 equations:
x + y = 90
5x + 1oy = 500
Multiplying both sides of (1) by 5, we get
5 × x + 5 x y = 90 x 5
5x + 5y = 450
Subtracting (3) from (2), we get

∴ y = 50/5 = 10
Substitute y = 10 in equation (1)
x + y = 90 ⇒ x + 10 = 90
⇒ x = 90 – 10 ⇒ x = 80
There are ₹ 5 denominations are 80 numbers and ₹ 10 denominations are 10 numbers

Question 7.
At present, Thenmozhi’s age is 5 years more than that of Murali’s age. Five years ago, the ratio of Thenmozhi’s age to Murali’s age was 3:2. Find their present ages.
Solution:
Let present ages ofThenmozhi & Murali be l’ & ‘m’
Given that at present
Thenmozhi’s age is 5 years more than Murali
∴ t = m + 5
5 years ago, Thenmozhi’s age would be t – 5
& Murali’s age would be m – 5
Ratio of their ages is given as 3 : 2
∴ t5/m5 = 3/2 [∴ By cross multiplication]
Samacheer Kalvi 8th Maths Solutions Term 2 Chapter 2 Algebra Ex 2.2 3
2(t – 5) = 3(m – 5)
2 x t – 2 x 5 = 3 x m – 3 x 5 ⇒ 2t – 10 = 3m – 15
Substituting for t from (1)
2(m + 5) – 10 = 3m – 15
2m + 10 – 10 = 3m – 15
2m = 3m – 15
3m – 2m = 15
m = 15
t = m + 5 = 15 + 5 = 20
∴ Present ages of Thenmozhi & Murali are 20 & 15

Question 8.
A number consists of two digits whose sum is 9. If 27 is subtracted from the original number, its digits are interchanged. Find the original number.
Solution:
Let the units/digit of a number be ‘u’ & tens digit of the number be ‘t’
Given that sum of it’s digits is 9
∴ t + u = 9 ….(1)
If 27 is subtracted from original number, the digits are interchanged
The number is written as 10t + u
[Understand: Suppose a 2 digit number is 21,
it can be written as 2 x 10 + 1
∴ 32 = 3 x 10 + 2
45 = 4 x 10 + 5
tu = t x 10 + u = 10t + u]
Given that when 27 is subtracted, digits interchange
10t + u – 27 = 10u + t (number with interchanged digits)
∴ By transposition & bringing like variables together
10t – t + 10u =27

Objective Type Questions

Question 11.
Sum of a number and its half is 30 then the number is ……..
(a) 15
(b) 20
(c) 25
(d) 40
Answer:
(b) 20
Hint:
Let number be V
half of number is x/2
Sum of number and it’s half is given by
x + x/2 = 30 [Multiplying by 2 on both sides]
2x + x = 30 x 2
3x = 60
x = 60/3 = 20

 

Question 12.
The exterior angle of a triangle is 120° and one of its interior opposite angle 58°, then the other opposite interior angle is ………
(a) 62°
(b) 72°
(c) 78°
(d) 68°
Answer:
(a) 62°

Hint:
As per property of ∆, exterior angle is equals to sum of interior opposite angles Let the other interior angle to be found be ‘x’
∴ x + 58 = 120°
∴ x = 120 – 58 = 62°

Question 13.
What sum of money will earn ₹ 500 as simple interest in 1 year at 5% per annum?
(a) 50000
(b) 30000
(c) 10000
(d) 5000
Answer:
(c) 10000
Hint:
Let sum of money be ‘P’
Time period (n) is given as 1 yr.
Rate of simple interest (r) is given as 5% p.a
∴ As per formula for simple interest.
S.I = Pxrxn/100 = px5x1/100
P x 5 x 1 = 500 x 100
∴ P = 500×100/5 = 100 x 100 = 10,000

Question 14.
The product of LCM and HCF of two numbers is 24. If one of the number is 6, then the other number is ………
(a) 6
(b) 2
(c) 4
(d) 8
Answer:
(c) 4
Hint:
Product of LCM & HCF of 2 numbers is always product of the numbers. [this is property]
Product of LCM & HCF is given as 24.
∴ Product of the 2 nos. is 24
Given one number is 6.
Let other number be ‘x’
∴ 6 × x = 24
∴ x = 24/6 = 4

The Complete Educational Website

Leave a Reply

Your email address will not be published. Required fields are marked *