MP 9 Maths

MP Board Class 9th Maths | त्रिभुज

MP Board Class 9th Maths | त्रिभुज

MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.1

प्रश्न 1.
चतुर्भुज ∆CBD में AC=AD और AB कोणA को समद्विभाजित करता है। (देखिए चित्र 7.1) दर्शाइए कि ∆ ABC ≅ ∆ ABD है। BC और BD के बारे में आप क्या कह सकते हैं ?
(2018, 19)


चित्र 7.1
हल:
चित्रानुसार ∆ABC और ∆ABD में,
∵ भुजा AC = भुजा AD
∵ ∠BAC = ∠BAD
∵ भुजा AB = भुजा AB
∵ ∆ABC ≅ ∆ABD (SAS सर्वांगसमता नियम से) इति सिद्धम्
भुजा BC = भुजा BD. (CPCT)

प्रश्न 2.
ABCD एक चतुर्भुज है जिसमें AD = BC और । ∠DAB = ∠CBA है। (देखिए चित्र 7.2) सिद्ध कीजिए कि-
(i) ∆ABD ≅ ∆BAC
(ii) BD = AC
(iii) ∠ABD = ∠BAC.

चित्र 7.2
हल:
(i) चित्रानुसार ∆ ABD और ∆BAC में,
∵ भुजा AD = भुजा BC (दिया है)
∵ ∠DAB = ∠CBA (दिया है)
∵ भुजा AB = भुजा AB (उभयनिष्ठ हैं)
∴ ∆ABD = ∆BAC. (SAS सर्वांगसमता नियम से) इति सिद्धम्

(ii) ∵ ∆ABD ≅ ∆BAC (सिद्ध कर चुके हैं)
∴ भुजा BD = भुजा AC. (CPCT) इति सिद्धम्

(iii) ∵∆ABD ≅ ∆BAC (सिद्ध कर चुके हैं)
∴ ∠ABD = ∠BAC. (CPCT) इति सिद्धम्

प्रश्न 3.
एक रेखाखण्ड AB पर AD और BC दो बराबर लम्ब रेखाखण्ड हैं (देखिए चित्र 7.3)। दर्शाइए कि चित्र CD रेखाखण्ड AB को समद्विभाजित करता है।

चित्र 7.3
हल:
चित्रानुसार रेखाखण्ड CD, रेखाखण्ड AB को बिन्दु O पर प्रतिच्छेद करता है।
अब ∆OAD और ∆OBC में,
∵ भुजा AD = भुजा BC (दिया है)
∵ ∠OAD = ∠OBC = 90° (दिया है)
∵ ∠AOD = ∠BOC (शीर्षाभिमुख कोण हैं)
∴ ∆OAD ≅ ∆OBC (SAA सर्वांगसमता नियम से)
∴ भुजा OA = भुजा OB (CPCT)
अतः रेखाखण्ड CD रेखाखण्ड AB को समद्विभाजित करता है। इति सिद्धम्

प्रश्न 4.
1 और m दो समान्तर रेखाएँ हैं जिन्हें समान्तर रेखाओंp और का एक अन्य युग्म प्रतिच्छेदित करता है। (देखिए चित्र 7.4)। दर्शाइए कि-
∆ABC ≅ ∆CDA है।

चित्र 7.4
हल:
∵l || m को रेखाखण्ड AC क्रमश: A और C बिन्दुओं पर प्रतिच्छेद करता है।
∴ ∠ACB = ∠CAD …(1) (एकान्तर कोण हैं)
∵ p || q को रेखाखण्ड AC क्रमशः A और C बिन्दुओं पर प्रतिच्छेद करता है।
∴ ∠CAB = ∠ACD (एकान्तर कोण है)…(2)
अब ∆ABC एवं ∆CDA में,
∵ ∠ACB = ∠CAD [सिद्ध कर चुके हैं समीकरण (1) से]
∵ ∠CAB = ∠ACD [सिद्ध कर चुके हैं समीकरण (2) से]
∵ भुजा AC = भुजा AC (उभयनिष्ठ है)
अतः ∆ABC ≅ ∆CDA. (ASA सर्वांगसमता नियम से) इति सिद्धम्

प्रश्न 5.
रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिन्दु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लम्ब हैं (देखिए चित्र 7.5)। दर्शाइए कि
(i) ∆APB ≅ ∆AQB.
(ii) BP = BQ अर्थात् बिन्दु B कोणों की भुजाओं से समदूरस्थ है।

चित्र 7.5
हल:
∵ रेखा l कोण A की समद्विभाजक है। (दिया है)
∴ ∠BAP = ∠BAQ ..(1)
∵ BP L AP एवं BQ LAQ (दिया है)
∵ LAPB = ∠AQB = 90° ….(2)
अब (i) ∆APB और ∆AQB में,
∵ ∠BAP = ∠BAQ [समीकरण (1) से ]
∵ ∠APB = ∠AQB [समीकरण (2) से]
∵ भुजा AB = भुजा AB (उभयनिष्ठ है)
∴ ∆APB ≅ ∆AQB. (SAA सर्वांगसमता नियम से) इति सिद्धम्

एवं (ii) ∵ ΔΡΒΕ ≅ ΔΑΟΒ (सिद्ध कर चुके हैं)
∴ भुजा BP = भुजा BQ (CPCT)
अर्थात् बिन्दु B कोणों की भुजाओं से समदूरस्थ है। इति सिद्धम्

प्रश्न 6.
चित्र 7.6 में AC = AE एवं AB = AD और ∠BAD = ∠EAC है। दर्शाइए कि BC = DE है।

चित्र 7.6
हल:
चित्रानुसार ΔABC एवं ΔADE में,
∵ भुजा AB = भुजा AD. (दिया है)
∵ ∠BAD = ∠EAC (दिया है)
∵ भुजा AC = भुजा AE (दिया है)
ΔABC ≅ ΔADE (SAS सर्वांगसमता नियम)
अतः भुजा BC = भुजा DE (CPCT) इति सिद्धम्

प्रश्न 7.
संलग्न चित्र में AB एक रेखाखण्ड है और Pइसका मध्य-बिन्दु है। D और E रेखाखण्ड AB के एक ही ओर स्थित दो बिन्दु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB. दर्शाइए कि-
(i) ΔDAP ≅ ΔEBP.
(ii) AD = BE.

चित्र 7.7
हल:
प्रश्नानुसार, AP = BP (दिया है AB का मध्य-बिन्दु P)…(1)
∵ ∠EPA = ∠DPB (दिया है)
⇒ ∠EPA + ∠EPD = ∠DPB + ∠EPD (यूक्लिड अभिगृहीत-II)
⇒ ∠APD = ∠BPE (चित्रानुसार)…(2)
∵ ∠BAD = ∠ABE (दिया है)
⇒ ∠PAD = ∠PBE (चित्रानुसार) …(3)

(i) अब ΔDAP एवं ΔEBP में,
∵ ∠PAD = ∠PBE [समीकरण (3) से]
∵ AP = BP [समीकरण (1) से]
∵ ∠APD = ∠BPE [समीकरण(2) से]
अतः ΔDAP ≅ ΔEBP (ASA सर्वांगसमता गुण) इति सिद्धम्

(ii) ∵ ΔDAP ≅ ΔEBP [भाग (i) में सिद्ध कर चुके हैं।
अतः AD = BE. (CPCT) इति सिद्धम्

प्रश्न 8.
एक समकोण त्रिभुज ABC में जिसमें कोण C समकोण है। M कर्ण AB का मध्य-बिन्दु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिन्दु D को बिन्दु B से मिला दिया जाता है (संलग्न चित्र देखिए)। D दर्शाइए कि-
(i) ΔAMC ≅ ΔBMD.
(ii) ∠DBC एक समकोण है।
(iii) ΔBDC ≅ ΔACB.
(iv) CM = 12 AB.

चित्र 7.8
हल:
(i) ΔAMC और ΔBMD में,
∵ AM = BM (दिया है : AB का मध्य-बिन्दु M)
∵ CM = DM (दिया है)
∵∠AMC=∠BMD (शीर्षाभिमुख कोण हैं)
ΔAMC ≅ ΔBMD. (SAS सर्वांगसमता गुण) इति सिद्धम्

(ii) चूँकि ΔAMC ≅ ΔBMD. (सिद्ध कर चुके हैं।)
⇒ ∠ACM= ∠BDM (CPCT)
⇒ DB || AC (एकान्तर कोण बराबर हैं)
⇒ ∠DBC + ∠ACB = 180° (एक ही ओर के अन्तः कोण हैं)
⇒ ∠DBC + 90° = 180° (∠ACB समकोण है।)
⇒ ∠DBC = 180° – 90° = 90°
अत: ∠DBC एक समकोण है। इति सिद्धम्

(iii) चूँकि ΔAMC ≅ ΔBMD. (सिद्ध कर चुके हैं)
⇒ AC = BD (CPCT)
अब ΔDBC और ΔACB में,
चूँकि BD = AC (सिद्ध कर चुके हैं)
∠DBC = ∠ACB = 90° (सिद्ध कर चुके हैं)
एवं BC = BC (उभयनिष्ठ है)
अतः ΔDBC ≅ ΔACB. इति सिद्धम्

(iv) चूँकि ΔDBC ≅ ΔACB (सिद्ध कर चुके हैं)
⇒ DC = AB (CPCT)
अतः CM = 1/2AB. (CPCT) [∵ CM = DM (दिया है)] इति सिद्धम्

MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.2

प्रश्न 1.
एक समद्विबाहु त्रिभुज ABC में जिसमें AB = AC है, ∠B और ∠C के समद्विभाजक परस्पर 0 बिन्दु पर प्रतिच्छेद करते हैं। A और O को जोड़िए। दर्शाइए कि-
(i) OB = OC.
(ii) AO, ∠A को समद्विभाजित करता है।

चित् 7.9
हल:
(i) चित्रानुसार (चित्र संलग्न है।)
चूँकि ∆ABC में, AB = AC (दिया है)
इसलिए ∠ABC = ∠ACB (समान भुजाओं के सम्मुख कोण हैं)
चूँकि OB एवं OC क्रमश: ∠ABC एवं ∠ACB के समद्विभाजक हैं। (दिया है)
इसलिए ∠OBC = ∠OCB (बराबर वस्तुओं के आधे बराबर होते हैं)
अतः OB = OC. (AOBC के बराबर कोणों की सम्मुख भुजाएँ हैं) इति सिद्धम्

(ii) अब ∆AOB और ∆AOC में,
चूँकि भुजा AB = भुजा AC (दिया है)
भुजा OB = भुजा OC (सिद्ध कर चुके हैं)
भुजा AO = भुजा A0 (उभयनिष्ठ है)
अतः ∆AOB ≅ ∆AOC (SSS सर्वांगसमता प्रमेय)
⇒ ∠BAO = ∠CAO (CPCT)
अत: AO, ∠A को समद्विभाजित करता है। इति सिद्धम्

प्रश्न 2.
∆ABC में AD भुजा BC का लम्ब समद्विभाजक है (देखिए संलग्न चित्र)। दर्शाइए कि ∆ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है।
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.2 2
चित् 7.10
हल:
∆ADB और ∆ADC में,
चूँकि BD = CD (दिया है : AD, BC का समद्विभाजक)
∠ADB = ∠ADC (दिया है : AD, BC पर लम्ब)
AD = AD (उभयनिष्ठ है)
⇒ ∆ADB ≅ ∆ADC (SAS सर्वांगसमता प्रमेय)
⇒ AB = AC (CPCT)
अत: ∆ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC. इति सिद्धम्

प्रश्न 3.
संलग्न चित्र में ABC एक समद्विबाहु त्रिभुज है जिसमें बराबर भुजाओं AC और AB पर क्रमशः शीर्ष लम्ब BE और CF खींचे गए हैं। दर्शाइए कि ये शीर्ष लम्ब बराबर है।

चित् 7.11
हल:
∆ABE और ∆ACF में,
चूँकि AB = AC (समद्विबाहु ∆ की । बराबर भुजाएँ दी गई हैं।)
∠BAE = ∠CAF (उभयनिष्ठ है)
⇒ ∠AEB = ∠AFC = 90° (:: BE ⊥ AC एवं CF ⊥ AB)
⇒ ∆ABE ≅ ∆ACF (AAS सर्वांगसमता प्रमेय)
⇒ BE = CF (CPCT)
अतः अभीष्ट शीर्ष लम्ब बराबर हैं। इति सिद्धम्

प्रश्न 4.
ABC एक त्रिभुज है जिसमें AC और AB पर खींचे गए शीर्ष लम्ब BE और CF समान हैं (देखिए संलग्न चित्र)।
दर्शाइए कि-
(i) ∆ABE ≅ ∆ACE
(ii) AB = AC अर्थात् ∆ABC एक समद्विबाहु त्रिभुज है।
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.2 4
चित् 7.12
हल:
(i) ∆ABE और ∆ACF में,
चूँकि ∠BAE = ∠CAF (उभयनिष्ठ है)
∠AEB = ∠AFC = 90° [∵ BE ⊥ AC और CF ⊥ AB (दिया है)]
एवं BE = CF (दिया है)
∆ABE ≅ ∆ACE (AAS सर्वांगसमता प्रमेय) इति सिद्धम्

(ii) ∆ABE ≅ ∆ACF [भाग (i) में सिद्ध कर चुके हैं।]
⇒ AB = AC (CPCT)
अतः त्रिभुज ABC एक समद्विबाहु त्रिभुज है। इति सिद्धम्

प्रश्न 5.
ABC और DBC समान आधार BC पर स्थित दो समद्विबाहु त्रिभुज है (देखिए संलग्न चित्र)। दर्शाइए कि-
∠ABD = ∠ACD. (2019)

चिन्न 7.13
हल:
∵ ∆ABC एक समद्विबाहु A है (दिया है)
⇒ ∠ABC = ∠ACB …(1) (समान BT भुजाओं के सम्मुख कोण हैं)
∵ ∆DBC एक समद्विबाहु त्रिभुज है (दिया है)
⇒ ∠DBC = ∠DCB …(2) (समान भुजाओं के सम्मुख कोण हैं)
⇒ ∠ABC + ∠DBC = ∠ACB + ∠DCB [समीकरण (1) एवं (2) से]
अतः ∠ABD = ∠ACD. (चित्रानुसार) इति सिद्धम्

प्रश्न 6.
ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है। भुजा BA बिन्दु D तक इस प्रकार बढ़ाई गई है कि AD = AB है (देखिए संलग्न चित्र)। दर्शाइए कि ∠BCD एक समकोण है।

चित्र 7.14
हल:
∆ABC में, AB = AC (दिया है)
⇒ ∠ABC = ∠ACB ….(1) (बराबर भुजाओं के सम्मुख कोण हैं)
चूँकि AB = AD एवं AB = AC (दिया है)
⇒ AD = AC (यूक्लिड अभिधारणा-I)
⇒ ∆ACD में, चूँकि AD = AC
⇒ ∠ADC = ∠ACD …(2) (बराबर भुजाओं के सम्मुख कोण है)
⇒ ∠ABC + ∠ADC = ∠ACB + ∠ACD [समी. (1) एवं (2) से]
⇒ ∠ABC + ∠ADC = ∠BCD (∵ ∠ACB + ∠ACD =∠BCD, चित्रानुसार)
लेकिन ∠ABC + ∠ADC + ∠BCD = 180° (त्रिभुज के अन्तः कोण है)
= ∠ABC + ∠ADC = ∠BCD = 90°
अतः अभीष्ट कोण ∠BCD = 90° इति सिद्धम्

प्रश्न 7.
ABC एक समकोण त्रिभुज है जिसमें ∠A = 90° और AB = AC है। ∠B और ∠C ज्ञात कीजिए।
हल:
दिया है AB = AC ⇒ ∠B = ∠C (बराबर भुजाओं के सम्मुख कोण हैं)
∵ ∠A + ∠B + ∠C = 180° (त्रिभुज के अन्तः कोण हैं)
⇒ 90° + x + x = 180° [माना ∠B = ∠C = x एवं ∠A = 90° (दिया है)]
⇒ 2x = 180° – 90° = 90°
⇒ x = 90°/2 = 45°
अतः अभीष्ट कोण ∠B = ∠C = 45°.

प्रश्न 8.
दर्शाइए किसी समबाहु त्रिभुज का प्रत्येक कोण 60° होता है।
हल:
चूँकि समबाहु त्रिभुज का प्रत्येक कोण एक-दूसरे के बराबर होता है। मान लीजिए इसका मान x° है।
इसलिए x + x + x = 180° (त्रिभुज के अन्तः कोण है)
⇒ 3x = 180° = x = 180°/3 = 60°
अतः समबाहु त्रिभुज का प्रत्येक कोण 60° होता है।

MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.3

प्रश्न 1.
∆ABC और ∆DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए संलग्न चित्र)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे तो दर्शाइए :
(i) ∆ABD ≅ ∆ACD.
(ii) ∆ABP ≅ ∆ACP
(iii) AP कोण A और कोण D दोनों को समद्विभाजित करता है।
(iv) AP रेखाखण्ड BC का लम्ब समद्विभाजक है।

चित्र 7.15
हल:
(i) ∆ABD और ∆ACD में,
चूँकि AB = AC (समद्विबाहु ∆ABC भी भुजाएँ हैं)
DB = DC (समद्विबाहु ∆DBC की भुजाएँ हैं।)
एवं AD = AD (उभयनिष्ठ है)
अतः ∆ABD ≅ ∆ACD. (SSS सर्वांगसमता प्रमेय) इति सिद्धम्

(ii) ∆ABP और ∆ACP में,
चूँकि AB = AC (समद्विबाहु ∆ABC भी भुजाएँ हैं)
∠BAP = ∠CAP (∆ABD ≅ ∆ACD के संगत कोण हैं)
एवं AP = AP (उभयनिष्ठ है)
अतः ∆ABP ≅ ∆ACP (SAS सर्वांगसमता प्रमेय) इति सिद्धम्

(iii) ∵ ∆ABD ≅ ∆ACD [भाग (i) में सिद्ध कर चुके हैं।]
⇒ ∠BAD = ∠CAD (CPCT)
इसलिए AP कोण A का समद्विभाजक है।
एवं ∠ADB = ∠ADC (CPCT)
एवं ∠BDP = ∠CDP (बराबर कोणों के सम्पूरक हैं)
इसलिए AP कोण D का समद्विभाजक है।
अतः AP कोण A और कोण D दोनों का समद्विभाजक हैं। इति सिद्धम्

(iv) ∵ ∆ABP ≅ ∆ACP [भाग (ii) में सिद्ध कर चुके हैं। ]
⇒ BP= CP (CPCT)
एवं ∠APB = ∠APC (CPCT)
लेकिन ∠APB + ∠APC = 180° (BC के बिन्दु P पर एक ही ओर बने कोण हैं)
इसलिए ∠APB = ∠APC = 90°
अतः AP रेखाखण्ड BC का लम्ब समद्विभाजक है। इति सिद्धम्

प्रश्न 2.
AD एक समद्विबाहु ∆ABC का एक शीर्ष लम्ब है जिसमें AB = AC है। दर्शाइए कि-
(i) AD रेखाखण्ड BC को समद्विभाजित करता है।
(ii) AD कोण A को समद्विभाजित करता है।

चित्र 1.16
हल:
(i) चूँकि ∠ADB = ∠ADC = 90° (∵ AD ⊥ BC)
इसलिए ∆ADB एवं ∆ADC समकोण त्रिभुज हैं।
अब समकोण ∆ADB और ∆ADC में,
चूँकि कर्ण AB = कर्ण AC (समद्विबाहु ∆ABC की भुजाएँ हैं)
एवं AD = AD (उभयनिष्ठ है)
⇒ ∆ADB ≅ ∆ADC (RHS सर्वांगसमता प्रमेय)
⇒ BD = CD (CPCT)
अतः AD रेखाखण्ड BC की समद्विभाजित करता है। इति सिद्धम्

(ii) चूँकि ∆ADB ≅ ∆ADC (सिद्ध कर चुके हैं)
∠BAD = ∠CAD (CPCT)
अत: AD कोण A को समद्विभाजित करता है। इति सिद्धम्

प्रश्न 3.
एक त्रिभुज ABC की दो भुजाएँ AB और BC तथा माध्यिका AM क्रमशः एक दूसरे त्रिभुज POR की भुजाओं PQ और OR तथा माध्यिका PN के बराबर है (देखिए संलग्न चित्र)। दर्शाइए कि-
(i) ∆ABM ≅ ∆PQN.
(ii) ∆ABC ≅ ∆PQR.

चित्र 1.17
हल:
त्रिभुज ABC और PQR में AB = PO, BC = QR एवं माध्यिका AM = PN (दिया है)
चूँकि BC = OR ⇒ 12BC = 12QR ⇒ BM = ON

(i) अब ∆ABM और ∆PON में,
चूँकि AB = PQ (दिया है)
BM = ON (सिद्ध कर चुके है)
AM = PN (दिया है)
अतः ∆ABM ≅ ∆PON. (SSS सर्वांगसमता प्रमेय) इति सिद्धम्

(ii) चूँकि ΔΑΒΜ ≅ ΔΡQΝ [भाग (i) में सिद्ध कर चुके हैं।]
⇒ ∠ABM = ∠PQN अर्थात्∠ABC = ∠PQR (CPCT)
अब ∆ABC और ∆PQR में,
चूँकि AB = PQ (दिया है)
∠ABC = ∠PQR (सिद्ध कर चुके हैं)
BC = QR (दिया है)
अतः ∆ABC ≅ ∆POR. इति सिद्धम्

प्रश्न 4.
BE और CF एक त्रिभुज ABC के दो बराबर शीर्ष लम्ब हैं। RHS सर्वांगसमता नियम का प्रयोग करके सिद्ध कीजिए कि ΔABC एक समद्विबाहु त्रिभुज है।

चित्र 1.18
हल:
दिया है : एक ∆ABC जिसमें BE एवं CF दो शीर्ष लम्ब हैं
तथा BE = CF,
समकोण ∆BFC एवं समकोण ∆CEB में (शीर्ष लम्ब BE ⊥ AC एवं CF ⊥ AB),
चूँकि BE = CF (दिया है)
एवं कर्ण BC = कर्ण BC (उभयनिष्ठ है)
⇒ ∆BFC ≅ ∆CEB (RHS सर्वांगसमता प्रमेय से)
⇒ ∠FBC = ∠ECB अर्थात् ∠ABC = ∠ACB. (CPCT)
AB = AC (बराबर कोणों की सम्मुख भुजाएँ हैं)
अत: AABC एक समद्विबाहु त्रिभुज है। इति सिद्धम्

प्रश्न 5.
ABC एक समद्विबाहु त्रिभुज है जिससे AB = AC है। AP ⊥ BC खींचकर दर्शाइए कि ∠B = ∠C है। (2019)
अथवा
सिद्ध कीजिए एक समद्विबाहु त्रिभुज की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं। (2019)
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.3 5
चित्र 1.19
हल:
समद्विबाहु ∆ABC में AB = AC दिया गया है। AP ⊥ BC खींचा गया है।
अब समकोण त्रिभुज APB एवं समकोण ∆ APC
चूँकि कर्ण AB = कर्ण AC (दिया है)
एवं AP = AP (उभयनिष्ठ है)
⇒ ∆APB ≅ ∆APC (RHS सर्वांगसम प्रमेय)
⇒ ∠B = ∠C. (CPCT) इति सिद्धम्

MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4

प्रश्न 1.
दर्शाइए कि समकोण त्रिभुज में कर्ण सबसे लम्बी भुजा होती है। (2018)
हल:
ज्ञात है ∆ABC का कोण B समकोण है।

चित्र 7.20
चूँकि ∠B > ∠C तथा ∠B > ∠A (त्रिभुज में समकोण सबसे बड़ा होता है)
⇒ AC > AB तथा AC > BC (बड़े कोण की सम्मुख भुजा बड़ी होती है)
अतः समकोण त्रिभुज में कर्ण सबसे बड़ा होता है। इति सिद्धम् ।

प्रश्न 2.
संलग्न चित्र में ∆ABC की भुजाएँ AB और AC को क्रमशः बिन्दुओं Pऔर ए तक बढ़ाया गया है। साथ ही ∠PBC < ∠QCB है। दर्शाइए कि AC > AB है।
हल:
चूँकि ∠PBC < ∠QCB (दिया है)

चित्र 7.21
⇒ ABC > ∠ACB (छोटे कोण का सम्पूरक बड़े कोण के सम्पूरक से बड़ा होता है)
अतः AC > AB. (त्रिभुज से बड़े कोण के सामने की भुजा बड़ी होती है) इति सिद्धम्

प्रश्न 3.
संलग्न चित्र में ∠ B < ∠A और ∠C < ∠D BN है। दर्शाइए कि-
AD < BC है।

चित्र 7.22
हल:
चूँकि ∆OAB में, ∠B < ∠A (दिया है)
⇒ AO < BO …(1) AD (∆ में छोटे कोण के सामने की भुजा छोटी होती है)
चूँकि ∆OCD में, ∠C < ∠D (दिया है)
⇒ OD ⇒ AO + OD < BO + OC – [समीकरण (1) और (2) से]
अतः AD < BC. (∵ AO + OD = AD एवं BO + OC = BC) इति सिद्धम् प्रश्न 4. AB और CD क्रमशः एक चतुर्भुज की सबसे छोटी और सबसे बड़ी भुजाएँ हैं (देखिए संलग्न चित्र)। दर्शाइए कि- ∠A >∠C और ∠B >∠D है।

चित्र 7.23
हल:
प्रश्नानुसार, AB < BC, AB < CD एवं AB < AD तथा CD > AB, CD > BC एवं CD > AD.
AC और BD को मिलाइए।
चूँकि ∆ABC में, BC > AB (∵ AB < BC दिया है) ⇒ ∠BAC > ∠BCA, (बड़ी भुजा के सामने का कोण) …(1)
तथा ∆ACD में, CD > AD (दिया है)
⇒ ∠CAD > ∠ACD (बड़ी भुजा के सामने का कोण) …(2)
⇒ ∠BAC + ∠CAD > ∠BCA + ∠ACD [समी. (1) और (2) से]
अतः ∠A > ∠C. इति सिद्धम् चूँकि
चूँकि ∆ABD में, AD > AB (दिया है)
⇒ ∠ABD > ∠ADB . (बड़ी भुजा का सम्मुख कोण) …(1)
तथा ∆BCD में, CD > BC (दिया है)
⇒ ∠DBC > ∠BDC (बड़ी भुजा का सम्मुख कोण) …(2)
⇒ ∠ABD + ∠DBC > ∠ADB+ ∠BDC [समी. (1) और (2) से]
अतः ∠B >∠D. इति सिद्धम्

प्रश्न 5.
संलग्न चित्र में PR> PQ और PS कोण DPR को समद्विभाजित करता है।
सिद्ध कीजिए कि – ∠PSR> ∠PSQ.

चित्र 7.24
हल:
चूँकि ∆POR में, PR > PQ
⇒ ∠Q >∠R (बड़ी भुजा का सम्मुख कोण) …(1)
दिया है : ∠OPS = ∠SPR (PS ∠QPR का समद्विभाजक दिया है) …(2)
अब ∠QPS + ∠Q+ ∠PSQ = ∠SPR + ∠R + ∠PSR = 180°
(त्रिभुज के अन्त:कोणों का योग) ∠Q+ ∠PSQ = ∠R + ∠PSR [∵ ∠QPS = ∠SPR, समी. (2) से]
लेकिन ∠Q > ∠R [समीकरण (1) से]
⇒ ∠PSQ < ∠PSR अतः ∠PSR > ∠PSQ. इति सिद्धम्

प्रश्न 6.
दर्शाइए कि एक रेखा पर एक दिए हुए बिन्दु से, जो उस रेखा पर स्थित नहीं है, जितने रेखाखण्ड खींचे जा सकते हैं, उनमें लम्ब रेखाखण्ड सबसे छोटा होता है।

चित्र 7.25
हल:
ज्ञात है : रेखा AB के बाहर कोई बिन्दु P है। P से PM ⊥ AB खींचा गया है। AB पर एक अन्य कोई बिन्दु N है तथा PN को मिलाया गया है।
अब ∆PMN में, ∠PMN = 90°
⇒ ∠PMN > ∠PNM (समकोण A में समकोण सबसे बड़ा होता है)
⇒ PN > PM (बड़े कोण की सम्मुख भुजा बड़ी होती है)
⇒ PM < PN.
चूँकि रेखा पर N कोई या ऐच्छिक बिन्दु है।
अतः रेखा के बाहर किसी बिन्दु से रेखा पर जितने रेखाखण्ड खींचे जा सकते हैं उनमें लम्ब सबसे छोटा होता है।  इति सिद्धम्

MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Additional Questions

MP Board Class 9th Maths Chapter 7 अतिरिक्त परीक्षोपयोगी प्रश्न

MP Board Class 9th Maths Chapter 7 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
ABCD एक चतुर्भुज है, जिसमें AB = BC और AD = CD। दर्शाइए कि BD दोनों कोणों ABC और ADC को समद्विभाजित करता है।
हल:

चित्र 7.34
दिया है : एक चतुर्भुज ABCD जिससे
AB = BC और AD = CD। BD चतुर्भुज ABCD का एक विकर्ण है।
अब ∆ABD और ∆CBD में,
चूँकि AB = BC (दिया है)
AD = CD (दिया है)
एवं BD = BD (उभयनिष्ठ है)
⇒ ∆ABD ≅ ∆CBD (SSS सर्वांगसमता प्रमेय)
⇒ ∠ABD ≅ ∠CBD एवं ∠ADB = ∠CDB (CPCT)
अत: BD दोनों कोण ∠ABC एवं ∠ADC को समद्विभाजित करता है। इति सिद्धम्

प्रश्न 2.
ABC एक समकोण त्रिभुज है जिससे AB = AC, CA का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD.
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 15
चित्र 7.34
दिया है: ABC एक समकोण त्रिभुज जिसमें AB = AC, ∠A समकोण है जिसका समद्विभाजक AD, BC को बिन्दु D पर मिलता है।
अब ∠CAD = ∠BAD = 45° (∵ ∠A समकोण है तथा AD इसका समद्विभाजक है) …(1)
∠ACB = ∠ABC = 45° ..(2) (∵AB = AC के सम्मुख चित्र 7.35 कोण हैं तथा ∠A = 90°)
∠CAD = ∠BAD= ∠ACB = ∠ABC = 45° ….(3) [समी. (1) एवं (2) से]
अब ∆ABD में, ∠BAD = ∠ABC [समीकरण (3) से]
BD = AD (समान कोणों की सम्मुख भुजाएँ हैं) …(4)
एवं ∆ACD में, ∠CAD = ∠ACB [समीकरण (3) से]
⇒ CD = AD (समान कोणों की सम्मुख भुजाएँ हैं) …(5)
⇒ BD + CD = AD + AD = 2AD [समीकरण (4) और (5) से]
अत: BC = 2AD. (∵ BD + CD = BC चित्रानुसार) इति सिद्धम्

प्रश्न 3.
ABC एक समद्विबाहु त्रिभुज है, जिससे AC = BC ⊥ AD और BE क्रमशः BC और AC पर शीर्ष लम्ब हैं। सिद्ध कीजिए कि AE = BD.
हल:

चित्र 7.36
दिया है : ABC एक समद्विबाहु त्रिभुज जिससे AC = BC एवं AD ⊥ BC तथा BE ⊥ AC
∠ADC = ∠BEC = 90° [∵ AD ⊥ BC एवं BE ⊥ AC (दिया है)]
अब ∆ADC और ∆BEC में,
चूँकि ∠ADC = ∠BEC [समीकरण (1) से]
∠C = ∠C (उभयनिष्ठ है)
एवं AC = BC (दिया है)
⇒ ∆ADC = ∆BEC (ADS सर्वांगसमता प्रमेय)
⇒ CD = CE अर्थात् EC = DC (CPCT) …(2)
लेकिन AC = BC (दिया है) …(3)
⇒ AC – EC = BC – DC [समीकरण (3) और (2) से]
अतः AE = BD. (चित्रानुसार AC – EC = AE एवं BC – DC = BD) इति सिद्धम्

प्रश्न 4.
एक त्रिभुज ABC में, D भुजा AC का मध्य-बिन्दु है, जहाँ BD = 12AC है। दर्शाइए कि ∠ABC एक समकोण है।
हल:
दिया है : ∆ABC में D, AC का मध्य-बिन्दु एवं BD = 12AC.
AD = CD = 12AC …(1)
(D, AC का मध्य-बिन्दु दिया है)
BD = 12AC (दिया है) …(2)

चित्र 7.37
⇒ AD = CD = BD [समी. (1) और (2) से] …(3)
∆ABD में, AD = BD [समीकरण (3) से]
⇒ ∠ABD = ∠BAD (बराबर भुजाओं के सम्मुख कोण हैं) …(4)
एवं ∆CBD में, CD = BD [समीकरण (3) से]
∠CBD = ∠BCD …(5) (बराबर भुजाओं के सम्मुख कोण हैं)
∠ABD+ ∠CBD = ∠BAD+ ∠BCD [समी. (4) और (5) से]
∠ABC = ∠BAC + ∠BCA (चित्रानुसार) लेकिन
∠ABC + ∠BAC + ∠BCA = 180° (त्रिभुज के अन्त: कोण)
∠ABC = ∠BAC + ∠BCA = 180°/2 = 90°
अतः ∠ABC एक समकोण है। इति सिद्धम्

प्रश्न 5.
ABCD एक चतुर्भुज इस प्रकार है कि विकर्ण AC दोनों कोणों A और C को समद्विभाजित करता हैं। सिद्ध कीजिए कि
AB = AD और CB = CD है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 18
चित्र 7.38
दिया है : एक चतुर्भुज ABCD जिसमें विकर्ण AC कोण A और C का समद्विभाजक है अर्थात्
∠DAC = ∠BAC …(1)
और ∠DCA = ∠BCA …(2)
अब ∆ADC और ∆ABC में, चूँकि
∠DAC = ∠BAC [समी. (1) से]
∠DCA = ∠BCA [समी. (2) से]
एवं AC = AC (उभयनिष्ठ है)
⇒ ∆ADC ≅ ∆ABC (ASA सर्वांगसमता प्रमेय)
AB = AD और CB = CD. (CPCT) इति सिद्धम्

MP Board Class 9th Maths Chapter 7 लघु उत्तरीय प्रश्न

प्रश्न 1.
ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है तथा BD और CE इसकी दो मध्यिाकाएँ हैं। दर्शाइए कि BD = CE.
हल:

चित्र 7.39
दिया है : एक समद्विबाहु त्रिभुज ABC जिसमें AB = AC तथा BD एवं CE इसमें दो मध्यिकाएँ हैं, अर्थात्
AE = EB = 12AB TO AD = DC = 12 AC
⇒ EB = DC
अब ∆EBC और ∆DBC में,
चूँकि EB = DC (सिद्ध कर चुके हैं)
∠EBC = ∠DCB (AB = AC के सम्मुख कोण हैं)
एवं BC = BC (उभयनिष्ठ है)
⇒ ∆EBC ≅ ∆DBC (SAS सर्वांगसमता प्रमेय)
अतः BD = CE. (CPCT) इति सिद्धम्

प्रश्न 2.
संलग्न चित्र में D और E त्रिभुज ABC की भुजा BC पर दो बिन्दु इस प्रकार स्थित हैं कि BD = CE और AD = AE है। तो दर्शाइए कि ∆ABD ≅ ∆ACE है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 20
चित्र 7.40
दिया है : ∆ABC की भुजा BC पर दो बिन्दु D एवं E इस प्रकार हैं कि BD = CE और AD = AE.
∠ADE = ∠AED
⇒ ∠ADB = ∠AEC. (बराबर कोण के सम्पूरक. कोण हैं)
अब ∆ADB और ∆AEC में,
चूँकि AD = AE (दिया है)
∠ADB = ∠AEC (सिद्ध कर चुके हैं)
एवं BD = EC
अतः ∆ABD ≅ ∆ACE. (SAS सर्वांगसमता प्रमेय) इति सिद्धम्

प्रश्न 3.
संलग्न चित्र में BA ⊥ AC और DE ⊥ DF इस प्रकार हैं कि BA = DE और BF = EC हैं। दशाईए कि ∆ABC ≅ ∆DEF.

हल:
चूँकि BF = EC (दिया है)
⇒ BF + FC = EC + FC (बराबर संख्याओं में समान संख्या का योग)
⇒ BC = FE (चित्रानुसार) .
∴ समकोण ∆ABC और समकोण ∆DEF में, कर्ण BC = FE (सिद्ध कर चुके हैं)
एवं BA = DE (दिया है)
अतः ∆ABC ≅ ∆DEE (RHS सर्वांगसमता प्रमेय) इति सिद्धम्

प्रश्न 4.
एक ∆PSR की भुजा SR पर एक बिन्दु 0 इस प्रकार स्थित है कि PQ = PR है। सिद्ध कीजिए कि- PS >PQ.
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 22
चित्र 7.42
हल:
त्रिभुज PSR में SR पर बिन्दु ए इस प्रकार दिया है कि PQ = PR
⇒ ∠PQR = ∠PRQ (बराबर भुजाओं के सम्मुख कोण हैं)
लेकिन ∠PQR > ∠PSQ (बहिष्कोण है)
⇒ ∠PRS > ∠PSR (∠PRS = ∠PRO = ∠PQR एवं ∠PSR = ∠PSQ)
⇒ PS > PQ. (बड़े कोण की सम्मुख भुजा है।)
अतः (PQ > PR) इति सिद्धम्

प्रश्न 5.
∆PQR की भुजा QR पर कोई बिन्दु स्थित है। दर्शाइए कि PQ + QR + RP> 2PS.

चित्र 7.43
हल:
प्रश्नानुसार (संलग्न चित्र से)
∆PQS में, PQ + QS > PS (दो भुजाओं का योग तीसरी से बड़ा होता है)…(1)
एवं ∆PSR में, RP + SR > PS (दो भुजाओं का योग तीसरी से बड़ा होता है) …(2)
⇒ PQ+ QS + RP + SR > PS + PS [समीकरण (1) और (2) से]
⇒ PQ + QS + SR + RP > 2PS
अतः PQ+ QR + RP > 2PS. (QS + SR = QR चित्रांनुसार) इति सिद्धम्

प्रश्न 6.
AB = AC वाले एक ∆ABC की भुजा AC पर कोई बिन्दु D स्थित है। दर्शाइए कि CD < BD है।
हल:
MP Board Class 9th Maths Solutions Chapter 7 त्रिभुज Ex 7.4 24
चित्र 7.44
∆ABC में, AB = AC तथा AC पर बिन्दु D है।
∠ABC = ∠ACB (AB = AC के सम्मुख कोण हैं)
लेकिन ∠DBC < ∠ABC (किसी संख्या का अंश संख्या से कम होता है)
= ∠DBC < ∠ACB (∵ ∠ABC = ∠ACB)
अतः CD < BD. (छोटे कोण के सामने की भुजा छोटी होती है) इति सिद्धम्

प्रश्न 7.
संलग्न चित्र में l || m है तथा m रेखाखण्ड AB का मध्य-बिन्दु है। दर्शाइए M किसी भी रेखाखण्ड CD का मध्य-बिन्दु है जिसके अन्तःबिन्दु क्रमशः l और m पर स्थित हों।

चित्र 7.45
हल:
l || m को तिर्यक रेखाखण्ड AB क्रमशः A और B पर मिलती है। ∠CAB = ∠ABD (एकान्तर कोण हैं) …(1)
l ||m को तिर्यक रेखाखण्ड CD क्रमश: C और D पर मिलती है। ∠ACD = ∠BDC (एकान्तर कोण है) …(2)
अब ∆AMC और ∆BMD में, चूँकि ∠CAM = ∠MBD [समी. (1) और ∠CAB = ∠CAM एवं ∠MBD = ∠ABD]
AM = BM (AB का मध्य-बिन्दु M दिया है)
एवं ∠ACM = ∠BDM [समी. (2) और ∠ACD = ∠ACM एवं ∠BDC = ∠BDM]
∆AMC ≅ ∆BMD (ASA सर्वांगसमता प्रमेय) CM = DM . (CPCT)
अत: M किसी भी रेखाखण्ड CD का भी मध्य-बिन्दु है। इति सिद्धम्

प्रश्न 8.
AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। BO को एक बिन्दु M तक बढ़ाया गया है। सिद्ध कीजिए ∠MOC = ∠ABC है।
हल:

चित्र 7.46
ज्ञात है : AB = AC ⇒ ∠ABC = ∠ACB (बराबर भुजाओं के सम्मुख कोण हैं) चूँकि BO एवं CO क्रमश:
∠B एवं ∠C के समद्विभाजक है।
⇒ ∠OBC = 12ABC
एवं ∠OCB = 12∠ACB
⇒ ∠MOC = ∠OBC + ∠OCB (∠MOC, ∆OBC का बहिष्कोण है)
⇒ ∠MOC = 12∠ABC + 12∠ACB
अतः ∠MOC = ∠ABC. (∠ABC = ∠ACB सिद्ध कर चुके हैं) इति सिद्धम्

MP Board Class 9th Maths Chapter 7 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
त्रिभुजों ABC और POR में ∠A = 20 और ∠B = ∠R हैं। ∆POR की कौन-सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों ? अपने उत्तर के लिए कारण दीजि
उत्तर:
QR, क्योंकि यह AB के संगत भुजा है। (ASA सर्वांगसमता)।

प्रश्न 2.
त्रिभुजों ABC और POR में ∠A = Q और ∠B = ∠R। POR की कौन-सी भुजा ∆ABC की BC भुजा के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
RP, क्योंकि यह BC के संगत भुजा है। (AAS सर्वांगसमता)

प्रश्न 3.
“यदि किसी त्रिभुज की दो भुजाओं और एक कोण दूसरे त्रिभुज की दो भुजाओं और एक कोण के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है ? क्यों ?
उत्तर:
कथन असत्य है, क्योंकि भुजाओं के अंतर्गत कोण होना चाहिए।

प्रश्न 4.
“यदि किसी त्रिभुज के दो कोण एक भुजा, दूसरे त्रिभुज के दो कोण और एक भुजा के बराबर हों, तो दोनों त्रिभुज अवश्य ही सर्वांगसम होने चाहिए।” क्या यह कथन सत्य है ? क्यों ?
उत्तर:
कथन असत्य है, क्योंकि भुजाएँ संगत होनी चाहिए।

प्रश्न 5.
क्या भुजाओं की लम्बाइयों 4 सेमी, 3 सेमी और 7 सेमी लेकर किसी त्रिभुज की रचना की जा सकती है ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
त्रिभुज की रचना नहीं की जा सकती, क्योंकि यहाँ दो भुजाओं का योग तीसरी के बराबर है (यथा 4 + 3 = 7) जबकि यह बड़ा होना चाहिए।

प्रश्न 6.
∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR ? क्यों ?
उत्तर:
कथन सत्य नहीं है, क्योंकि भुजाएँ संगत होनी चाहिए।

प्रश्न 7.
यदि ∆POR ≅ ∆EDF है तो क्या यह कहना सत्य है कि PR = EF ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
कथन सत्य है, क्योंकि ये संगत भुजाएँ हैं।

प्रश्न 8.
∆POR में ∠P = 70° और ∠R = 30° है। उस त्रिभुज की कौन-सी भुजा सबसे लम्बी है ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
भुजा PR सबसे लम्बी है, क्योंकि ∠Q = 180° – 70° – 30° = 80° सबसे बड़ा है।

प्रश्न 9.
AD किसी त्रिभुज ABC की माध्यिका है। क्या यह कहना सत्य है कि AB + BC + CA > 2AD ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
कथन सत्य हैं, क्योंकि AB + BD > AD एवं AC + CD > AD.

प्रश्न 10.
M किसी त्रिभुज ABC की भुजा BC पर स्थित एक बिन्दु ऐसा है कि AM कोण BAC का समद्विभाजक है। क्या यह कहना सत्य है कि त्रिभुज का परिमाप 2AM से अधिक है ? अपने
उत्तर के लिए कारण दीजिए।
उत्तर:
कथन सत्य है, क्योंकि AB + BM > AM एवं AC + CM > AM.

प्रश्न 11.
क्या भुजाओं की लम्बाइयाँ 9 सेमी, 7 सेमी और 17 सेमी लेकर किसी त्रिभुज की रचना की जा सकती है ? अपने उत्तर के लिए कारण दीजिए।
उत्तर:
त्रिभुज की रचना नहीं की जा सकती, क्योंकि 9 + 7 < 17 जबकि दो भुजाओं का योग तीसरी से बड़ा होना चाहिए।

प्रश्न 12.
क्या भुजाओं की लम्बाइयों 8 सेमी, 7 सेमी और 4 सेमी लेकर किसी त्रिभुज की रचना की जा सकती है ? अपने उत्तर का कारण दीजिए।
उत्तर:
हाँ, रचना की जा सकती है। क्योंकि प्रत्येक स्थिति दो भुजाओं का योग तीसरी भुजा से बड़ा है।

MP Board Class 9th Maths Chapter 7 वस्तुनिष्ठ प्रश्न

बहु-विकल्पीय प्रश्न

प्रश्न 1.
निम्नलिखित में से कौन त्रिभुजों की सर्वांगसमता की एक कसौटी नहीं है :
(a) SAS
(b) ASA
(C) SSA
(d) SSS.
उत्तर:
(C) SSA

प्रश्न 2.
यदि AB = QR एवं BC = PR और CA = PQ है, तो :
(a) ∆ABC ≅ ∆PQR
(b) ∆CBA ≅ ∆PRQ
(c) ∆BAC ≅ ∆RPQ
(d) ∆PQR ≅ ∆BCA.
उत्तर:
(b) ∆CBA ≅ ∆PRQ

प्रश्न 3.
∆ABC में AB = AC और ∠B = 50° है तब ∠C बराबर है:
(a) 40°
(b) 50°
(c) 80°
(d) 130°.
उत्तर:
(b) 50°

प्रश्न 4.
∆ABC में BC = AB और ∠B = 80° तब ∠A बराबर है :
(a) 80°
(b) 40°
(c) 50°
(d) 100°.
उत्तर:
(c) 50°

प्रश्न 5.
∆POR में ∠R= ∠P तथा QR = 4 cm और PR = 5 cm है, तब PQ की लम्बाई है:
(a) 4 cm
(b) 5 cm
(c) 2 cm
(d) 2.5 cm.
उत्तर:
(a) 4 cm

प्रश्न 6.
D एक त्रिभुज ABC की भुजा BC पर एक बिन्दु इस प्रकार स्थित है कि AD कोण BAC को समद्विभाजित करता है। तब :
(a) BD = CD
(b) BA > BD
(c) BD > BA .
(d) CD > CA.
उत्तर:
(b) BA > BD

प्रश्न 7.
यह दिया है कि ∆ABC ≅ ∆FDE है तथा AB = 5 cm, ∠B = 40° एवं ∠A= 80° तब :
(a) DF = 5 cm, ∠F = 60°
(b) DF = 5 cm, ∠E = 60°
(c) DE = 5 cm, ∠F = 60°
(d) DE = 5 cm, ∠D = 40°.
उत्तर:
(b) DF = 5 cm, ∠E = 60°

प्रश्न 8.
एक त्रिभुज की दो भुजाओं की लम्बाइयाँ 5 cm और 1.5 cm है। इस त्रिभुज की तीसरी भुजा की लम्बाई निम्नलिखित नहीं हो सकती :
(a) 3.6 cm
(b) 4.1 cm
(c) 3.8 cm
(d) 3.4 cm.
उत्तर:
(d) 3.4 cm.

प्रश्न 9.
∆POR में यदि ∠P< ∠ R > ∠Q है, तो :
(a) QR > PR
(b) PQ > PR
(c) PQ < PR (d) QR > PR.
उत्तर:
(b) PQ > PR

प्रश्न 10.
∆ABC और ∆PQR में AB = AC, ∠C = ∠P और ∠B = 20 हैं। ये दोनों त्रिभुज हैं :
(a) समद्विबाहु परन्तु सर्वांगसम नहीं
(b) समद्विबाहु, सर्वांगसम
(c) सर्वांगसम परन्तु समद्विबाहु नहीं
(d) न तो सर्वांगसम और न हीं समद्विबाहु।
उत्तर:
(a) समद्विबाहु परन्तु सर्वांगसम नहीं

प्रश्न 11.
त्रिभुजों ABC और DEF में AB = FD तथा ∠A = ∠D है। दोनों त्रिभुज SAS अभिगृहीत से सर्वांगसम होंगे यदि :
(a) BC = EF
(b) AC = DE
(c) AC = EF
(d) BC = DE.
उत्तर:
(b) AC = DE

प्रश्न 12.
समान आकार एवं समान आकृति वाली आकृतियाँ होती हैं :
(a) बराबर
(b) समान
(c) सर्वांगसम
(d) समरूप।
उत्तर:
(c) सर्वांगसम

प्रश्न 13.
समकोण त्रिभुज में सबसे बड़ी भुजा होती है :
(a) लम्ब
(b) आधार
(c) कर्ण
(d) रेखा।
उत्तर:
(c) कर्ण

प्रश्न 14.
समबाहु त्रिभुज के प्रत्येक कोण का मान होता है : (2019)
(a) 90°
(b) 30°
(c) 60°
(d) 120°.
उत्तर:
(c) 60°

प्रश्न 15.
पाइथागोरस प्रमेय किस त्रिभुज के लिए प्रसिद्ध है :
(a) समबाहु त्रिभुज
(b) सर्वांगसम त्रिभुज
(c) समद्विबाहु त्रिभुज
(d) समकोण त्रिभुज।
उत्तर:
(d) समकोण त्रिभुज

रिक्त स्थानों की पूर्ति
1. समबाहु त्रिभुज का प्रत्येक कोण ……… होता है।
2. किसी त्रिभुज की दो भुजाओं का योग तीसरी भुजा से ……….. होता है।
3. समकोण त्रिभुज की सबसे बड़ी भुजा ………… होती है।
4. त्रिभुज के तीनों अन्तः कोणों का योग ………….. होता है।
5. समान आकार एवं समान आकृति वाली आकृतियाँ ……… होती हैं।
6. किसी त्रिभुज की दो भुजाएँ असमान हों तो, बड़ी भुजा के सामने का कोण ………. होता है।
7. किसी त्रिभुज की समान भुजाओं के सम्मुख कोण ………….. होते हैं।
8. किसी त्रिभुज में बड़े कोण के सामने की भुजा ………….. होती है।
उत्तर:
1. 60°,
2. बड़ा,
3. कर्ण,
4. 180°,
5. सर्वांगसम,
6. बड़ा,
7. बराबर,
8. बड़ी।

जोड़ी मिलान
स्तम्भ ‘A’                                                         स्तम्भ ‘B’
1. त्रिभुज जिसकी तीनों भुजाएँ समान हों     (a) अधिक कोण त्रिभुज
2. त्रिभुज जिसकी दो भुजाएँ समान हों        (b) न्यूनकोण त्रिभुज
3. त्रिभुज जिसका एक कोण 90° हो           (c) समबाहु त्रिभुज
4. त्रिभुज जिसका एक कोण अधिक कोण हो (d) केन्द्रक
5. त्रिभुज जिसका प्रत्येक कोण न्यूनकोण हो (e) समकोण त्रिभुज
6. माध्यिकाओं के संगमन बिन्दु को कहते हैं (2018) (f) समद्विबाहु त्रिभुज
उत्तर:
1. → (c),
2. → (1),
3. → (e),
4. → (a),
5. → (b),
6. → (d).

सत्य/असत्य कथन
1. समद्विबाहु त्रिभुज के तीनों कोण बराबर होते हैं। (2018)
2. किसी त्रिभुज के बड़े कोण के सामने की भुजा छोटी होती है।
3. किसी त्रिभुज की दो भुजाओं का योग, तीसरी भुजा से बड़ा होता है।
4. किसी रेखा के बाहर स्थित किसी बिन्दु से रेखा तक जितने रेखाखण्ड खींचे जा सकते हैं उनमें लम्ब सबसे छोटा होता है।
5. सभी वृत्त सर्वांगसम होते हैं।
6. यदि दो त्रिभुजों की संगत भुजाएँ बराबर हों, तो त्रिभुज बराबर हों, तो त्रिभुज सर्वांगसम होते हैं। (2019)
7. त्रिभुजों के तीनों कोणों का योग 180° होता है। (2019)
8. सर्वांगसम त्रिभुज में संगत भाग बराबर होते हैं। (2019)
उत्तर:
1. असत्य,
2. असत्य,
3. सत्य,
4. सत्य,
5. असत्य,
6. सत्य,
7. सत्य,
8. सत्य।

एक शब्द/वाक्य में उत्तर

1. किसी त्रिभुज में अधिकतम कितने समकोण हो सकते हैं ?
2. किसी त्रिभुज में अधिकतम कितने अधिक कोण हो सकते हैं ?
3. किसी त्रिभुज में कम-से-कम कितने न्यूनकोण हो सकते हैं ?
4. किसी त्रिभुज के बहिष्कोण और अन्तः कोणों में क्या सम्बन्ध होता है ?
5. समकोण समद्विबाहु त्रिभुज के प्रत्यके न्यूनकोण का मान कितना होता है ?
उत्तर:
1. एक,
2. एक,
3. दो,
4. त्रिभुज का बहिष्कोण सम्मुख अन्त:कोणों के योग के बराबर है अर्थात् प्रत्येक सम्मुख अन्तः कोण से बड़ा होता है,
5. 45° ।

Tense

Leave a Reply

Your email address will not be published. Required fields are marked *